
Motion Planning for Autonomous Vehicles in
Highly Constrained Urban Environments

Dennis Fassbender, Benjamin C. Heinrich and Hans-Joachim Wuensche∗

Abstract— In this paper, we present a motion planning
algorithm for autonomous navigation in highly constrained
urban environments. Since common approaches to on-road
trajectory planning turned out to be unsuitable for this task,
we instead extended an A*-based planner originally designed
for navigation in unstructured environments. Two novel node
expansion methods were added to obtain smooth and accurate
trajectories that consider the structure of the environment. The
first one attempts to find a trajectory connecting the current
node directly to the goal by solving a boundary value problem
using numerical optimization. The second method leverages a
simulated pure-pursuit controller to generate edges (i.e. short
motion primitives) that guide the vehicle toward or along the
global reference path. As a result, the planner is able to produce
smooth paths while retaining the explorative power of A* that is
needed to deal with challenging situations in urban driving (e.g.,
reversing in order to pass a vehicle that stopped unexpectedly).
Its practical usefulness was demonstrated during extensive tests
on an electric vehicle navigating a mock urban environment as
well as on our own autonomous vehicle MuCAR-3.

I. INTRODUCTION

The problem of autonomous urban driving has received
considerable attention since the 2007 DARPA Urban Chal-
lenge (DUC). Nevertheless, motion planning in urban envi-
ronments remains challenging for a variety of reasons. While
the structure of the environment as well as the rules of the
road usually allow trajectory planners to make a number of
simplifying assumptions, an autonomous vehicle may still
encounter difficult situations due to unexpected behavior
by other traffic participants. Furthermore, it may find itself
in areas that lack a clearly recognizable structure, thus
necessitating the use of more powerful planning algorithms
than those typically used for on-road driving.

The work presented here was motivated by the insight
that common approaches to on-road driving fail when the
environment is highly constrained, such as on narrow roads
with sharp turns (see Figure 1). This is due to the fact
that these methods generate candidate trajectories to different
goal poses without considering obstacles at first. In cluttered
environments, however, there may be situations where none
of these trajectories are free of obstacles. Also, these on-road
approaches are usually not powerful enough to plan complex
maneuvers that include reversing. While others address these
issues by switching between different motion planners (see
Section II), we found this to be cumbersome and instead
decided to develop a single algorithm capable of generating

∗All authors are with the Department of Aerospace Engineer-
ing, Institute for Autonomous Systems Technology (TAS), Univer-
sity of the Bundeswehr Munich, Germany. Contact author email:
dennis.fassbender@unibw.de

Fig. 1: The vehicle plans a trajectory (green, swept area in
white) through a sharp turn. The reference path is shown in
cyan, with black cells representing the free space of the road.

both smooth trajectories aligned with the course of the road
and complex maneuvers.

The paper is structured as follows. Section II covers
related work. After the algorithm is introduced in Section III,
Section IV presents experimental results. Finally, Section V
concludes the paper and mentions ideas for future work.

II. RELATED WORK

One of the most popular methods of on-road motion
planning is to generate a set of candidate trajectories to
different goal poses and pick the best trajectory based on
a cost function. The teams that took first and second place
in the DUC ([1], [2]) both used this approach. Urmson et
al. [1] generate trajectories by solving a boundary value
problem (BVP) using numerical optimization. In each step,
they foward-simulate a vehicle model whose lateral control
inputs are given in the form of a curvature polynomial [3]. By
linearizing and inverting the vehicle model, the polynomial’s
parameters are adjusted based on the deviation of the current
solution’s end point from the goal. Similarly, Montemerlo et
al. [2] generate paths with different lateral offsets relative
to the road center by varying the steering parameters of a
simulated vehicle.

For navigation in unstructured areas both teams switched
to an A*-based motion planner. Urmson et al. perform
Anytime Dynamic A* search in a variable-resolution lattice
of motion primitives. In contrast, Montemerlo et al. rely on
Hybrid A*, a planning algorithm that associates continuous
vehicle states with grid cells. While the search tree is
usually extended using short motion primitives, the planner
sometimes computes a Reeds-Shepp path [4] to the goal or to
a point on the lane net in an attempt to speed up the planning
process. Finally, the resulting path is smoothed using the

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3761-2/16/$31.00 ©2016 IEEE 4708

conjugate gradient method. The idea of applying numerical
optimization to a rather coarse path found by A* was also
adopted in works such as [5] and [6].

Other DUC contestants relied on a single planning algo-
rithm during the whole race, with Bacha et al. [7] using
A* to find an optimal sequence of precomputed motion
primitives and Leonard et al. [8] using a Rapidly Exploring
Random Tree-based approach. The latter requires cleverly
biased sampling in order to make the vehicle perform the
correct maneuvers.

The on-road planning approach in [1] was later extended
by McNaughton et al. [9], who introduced a spatiotemporal
lattice. Various lateral offsets were applied to a set of poses
on the lane’s center line (stations with different longitudinal
offsets). Pairs of poses with different longitudinal offsets
were connected using cubic curvature polynomials, resulting
in a lattice structure that was searched for the least-cost
trajectory.

Gu et al. [10] first construct a collision-free reference
trajectory from a graph containing nodes with different
longitudinal and lateral offsets to the lane center. Candidate
trajectories passing through the nodes of the graph are then
generated and evaluated based on a cost function that penal-
izes deviation from the reference trajectory and proximity to
moving obstacles.

While Werling et al. [11] also obtain goals by regular
sampling, they represent lateral and longitudinal motion in
a Frénet frame by quintic and quartic polynomials, respec-
tively. Trajectories that violate the vehicle’s constraints are
discarded. In contrast, Schwesinger et al. [12] only generate
feasible trajectories to a set of goals by closed-loop forward
simulation of a vehicle model.

Departing from (partly) sampling-based methods, Ziegler
et al. [13] formulate motion planning as a constrained opti-
mization problem. Their approach is promising as the algo-
rithm was successfully tested during a 100 km drive between
two German cities. Nonetheless, the authors themselves note
that some situations still call for combinatorial planning to
be used in addition to variational methods.

III. PLANNING ALGORITHM

The planning algorithm presented here is an extension
of the A*-based planner described in [14], which contains
details regarding the cost function, search tree pruning and
other aspects that will not be described again here. After an
overview of the regular A* search process in Section III-
A, Section III-B will introduce one-shot expansions: node
expansions that attempt to connect the current node directly
to the goal by solving a BVP. The second major extension,
pure-pursuit expansions, will be covered in Section III-C.
Note that both expansion methods are applied in addition to
the regular expansions described below.

A. A*-based Planning

In urban environments, the A* planner finds collision-
free trajectories using a static obstacle grid map of the local
environment as well as a set of dynamic obstacle grids. Each

of the latter grids has an associated time interval, which
means that occupied cells indicate space that may be blocked
by a dynamic obstacle during the time interval for which the
grid was created.

The planner works by constructing a tree consisting of
nodes that represent vehicle configurations (x, y, ψ, c0, v),
where (x, y, ψ) is the 2D pose, c0 is the curvature, and
v is the velocity. An edge between a parent node nparent
and a child node nchild represents a clothoid arc starting at
nparent’s configuration and ending at nchild’s configuration. If
the velocities of nparent and nchild differ, constant acceleration
along the arc is assumed. Hence, paths in the tree represent
continuous-curvature trajectories with linear velocity pro-
files. The length L of the clothoid arcs connecting two nodes
is kept fixed.

When a node n with configuration (x, y, ψ, c0, v) is re-
moved from the OPEN queue for expansion, a fixed number
B of child nodes is generated. If the vehicle is driving
forward, the first half of the child nodes keep the velocity
v while the second half are assigned the velocity vreduced
obtained by applying a negative acceleration aneg

lon for L
meters. The effect of this simulated braking maneuver is that
higher curvatures are possible further down the tree, which
is important when the vehicle approaches a sharp turn. If
vreduced < vpos

min, where vpos
min is a positive minimum velocity,

these ‘slow’ nodes are discarded. As a consequence, the plan-
ner never attempts to reverse when the car is driving forward.
Figure 2 shows an example of the expansion process.

When the vehicle is standing or driving backward, the
first half of the nodes is assigned vpos

min, whereas the rest is
assigned a small negative velocity vneg. Hence, the vehicle
will always drive backward at constant speed and consider
changing directions at every node while doing so.

The 2D poses and curvatures of the child nodes
n1, . . . , nB are computed by deterministically sampling B
curvature rates c11, . . . , c

B
1 . Note that we define rate as rate

w.r.t. distance in the context of curvatures. We then calculate
the end poses and curvatures of the clothoid arcs emanating
from the parent node’s pose (x, y, ψ) with initial curvature
c0 and the given curvature rates. The rates ci1 with i ∈
{1, . . . , B} are chosen such that two conditons are fulfilled:
(1) the final curvature ci0 does not exceed the maximum
curvature imposed by the vehicle’s kinematic constraints and
its maximum lateral acceleration; (2) the required steering
rate does not exceed the vehicle’s maximum steering rate.

Now that the child nodes’ configurations have been com-
puted, the clothoid arcs are checked for collisions with static
and dynamic obstacles and their costs are evaluated (based on
curvature, curvature rate and proximity to obstacles, among
other things; see [14]). A node’s heuristic cost is given by
the length of the Dubins path [15] to the goal.

A newly generated node satisfies the termination condition
if its heading is roughly identical to the goal’s heading and
the next expansion would get close to the goal longitudinally
or even pass it. The lateral offset to the goal is not considered,
which means a trajectory ending on an adjacent lane is a valid
solution. If the termination condition is satisfied, the node’s

4709

(0.1 1
m , 4.0m

s) (0.1 1
m , 3.16m

s)

(0.4 1
m , 2m

s)

Fig. 2: Two node expansions. The thick dots represent nodes,
while the gray lines represent edges (clothoid arcs with a
length of 3 m). The tuples represent the respective curvatures
and velocities stored in the red nodes. (For the sake of
visualization, we allowed unrealistic curvatures and curvature
rates.) Constant acceleration of −1m

s2 was used on each arc.

path replaces the current best solution if its cost is lower, and
it is discarded if its cost is higher. As the path usually does
not reach the goal precisely, its final node’s heuristic cost is
non-zero and added to the final path cost. However, since
some longitudinal distance to the goal remains, the Dubins
path to the goal tends to be short, except in rare cases where
the lateral offset is large.

If the termination condition is not satisfied, the node is
added to the OPEN queue for future expansion.

When the time limit is reached, the planner generates an
alternative velocity profile for the solution trajectory. While
the solution already has a velocity profile, it may be overly
cautious due to the simulated braking maneuver performed
during node expansion. Hence, the planner attempts to in-
crease the velocities. This is how the vehicle can accelerate
even though the current velocity is never increased by A*
(except when driving very slowly). If the new profile would
lead to a collision with a dynamic obstacle, the existing
conservative profile (which is guaranteed to be safe due to
the collision checks at each node expansion) is kept.

B. One-Shot Expansions

The idea behind one-shot expansions is to find a feasible
trajectory taking the vehicle from the current node to the
goal in a single step (or one shot). This is useful in cases
where the regular A* expansions make slow progress toward
the goal, e.g., because it lies in a high-cost region. While this
resembles the Reeds-Shepp expansions in [16], our one-shot
trajectories are different in that they are curvature-continuous
even without further modification. Another benefit is that
they tend to be smoother and reach the goal much more
accurately than regular A* paths, which suffer from the need
to discretize control inputs.

More precisely, our one-shot trajectories are found using
the model inversion techniques described in [3]. We first
apply Newton’s method to adjust the parameters of a cubic
curvature polynomial until it connects the configuration
(xstart, ystart, ψstart, cstart

0) of node nstart to the goal config-
uration (xgoal, ygoal, ψgoal, cgoal

0) with the desired accuracy.
While the polynomial may be infeasible (e.g., its curvature
may be too high), it can be found quickly and provides a
good initial guess for the second optimization step, which

generates a kinematically and dynamically feasible trajectory
using a simulated vehicle model. As the resulting trajectory
is a sequence of fixed-length clothoid arcs (i.e. it is C1

continuous), it is not as smooth as the polynomial. However,
we found this to be insignificant in practice.

Assuming that the cubic polynomial is parameterized by
the vector p = [a, b, c, s]>, where a, b and c are coefficients
and s denotes arc length, the state equations are given by

c0(p) = cstart
0 + as+ bs2 + cs3,

ψ(p) = ψstart +

∫ s

0

c0([a, b, c, l]>) dl,

x(p) = xstart +

∫ s

0

cos(ψ([a, b, c, l]>)) dl,

y(p) = ystart +

∫ s

0

sin(ψ([a, b, c, l]>)) dl.

Let fpoly(p) = [x(p), y(p), ψ(p), c0(p)]>, with Jpoly =
dfpoly

dp . The parameter update is then given by ∆p = J−1polye,
where e is the error vector

[xgoal − x(p), ygoal − y(p), ψgoal − ψ(p), cgoal
0 − c0(p)]>.

In optimization step k + 1, the parameter vector is updated
by setting p = p + αk+1∆p, where αk+1 is a step size
parameter that is computed as follows. Let ek and ek+1

denote 2-dimensional vectors containing the position errors
(i.e. the first two elements of the error vector) in steps k and
k + 1, respectively. We then set

αk+1 = min

(
1,max

(
0.1, αk

|ek|
|ek+1|

))
.

Hence, the step size increases if the L1 norm of the position
error decreased after the previous step and vice versa, but
it always stays within the interval [0.1, 1]. The errors in ψ
and c0 are not considered in this computation as we can
guarantee that they are zero after each parameter update
using the technique in [17] (Appendix C).

In order to generate a feasible trajectory, we use the
polynomial as lateral control input to the vehicle model
shown in Algorithm 1. The inputs to the model are a vehicle
configuration (including velocity) and the parameters of the
curvature polynomial.

In line 11, the required number of clothoid arcs is de-
termined. For the sake of brevity, we pretend that s is an
integer multiple of L (the length of regular A* edges) but
this is not required in practice. In line 14, the polynomial’s
curvature at the current distance is computed. It is passed
to the FeasibleCurvatureRate function, which limits it based
on the vehicle’s maximum curvature cmax

0 (a function of the
maximum steering angle and the wheelbase w according to
the bicycle model; line 2) and its maximum curvature at the
given velocity v (line 3). The latter depends on the maximum
lateral acceleration amax

lat . In line 4, the required curvature rate
c1 is determined based on the current curvature c0, the next
curvature cnext

0 and the arc length L. It is limited in line 6 by
taking the maximum steering rate λ̇max, the velocity v and
the wheelbase w into account (line 5). The resulting feasible

4710

Algorithm 1 The Vehicle Model

1: procedure FeasibleCurvatureRate(c0, cnext
0 , v)

2: climited
0 ← sgn(cnext

0) ·min(|cnext
0 |, cmax

0)

3: climited
0 ← sgn(cnext

0) ·min(|climited
0 |, a

max
lat
v2)

4: c1 ← climited
0 −c0

L

5: cmax
1 ← λ̇max · 1+w2c20

|v|w
6: climited

1 ← sgn(c1) ·min(|c1|, cmax
1)

7: return climited
1

8: end procedure
9:

10: procedure Predict(x, y, ψ, c0, v, a, b, c, s)
11: n← s

L
12: i← 1
13: while i ≤ n do
14: cnext

0 ← EvaluatePolynomial(a, b, c, i · L)
15: c1 ← FeasibleCurvatureRate(c0, c

next
0 , v)

16: (x, y, ψ, c0)← ClothoidArc(x, y, ψ, c0, c1, L)
17: i← i+ 1
18: end while
19: return (x, y, ψ, c0)
20: end procedure

curvature rate is returned. In line 16, the vehicle’s predicted
configuration is set to the configuration it would assume after
driving along the clothoid arc starting at pose (x, y, ψ) with
initial curvature c0, curvature rate c1 and length L. After
covering the entire distance s, the predicted configuration is
returned. What is not shown here is that Predict can also
reduce v in each iteration using constant deceleration.

Let fmodel : R4 → R4 denote a function that maps a
vector of polynomial parameters to the predicted vehicle
configuration [x, y, ψ, c0]> returned by the model. We can
then numerically compute the Jacobian of fmodel w.r.t. p
and again use Newton’s method to iteratively adjust p until
fmodel(p) is close to the goal configuration. However, we
found that representing the polynomial by equally spaced
knot points, as described by McNaughton [18], leads to more
reliable and faster convergence. [18] shows that by setting

q1 = c0([a, b, c,
s

3
]>),

q2 = c0([a, b, c,
2s

3
]>),

q3 = c0([a, b, c, s]>),

the parameter vector p can be expressed as a function of
q = [q1, q2, q3, s]

>, i.e. p(q) = [a(q), b(q), c(q), s] with

a(q) = −11cstart
0 − 18q1 + 9q2 − 2q3

2s
,

b(q) =
9(2cstart

0 − 5q1 + 4q2 − q3)

2s2
,

c(q) = −9(cstart
0 − 3q1 + 3q2 − q3)

2s3
.

Due to this relationship, we can now numerically compute
the Jacobian of fmodel ◦ p w.r.t. q and iteratively adjust q
until the configuration given by fmodel(p(q)) is sufficiently

(a)

(b)

Fig. 3: One-shot-based solution trajectories (green) in simu-
lated scenarios (reference path: cyan). In the obstacle-free
case (a), regular A* expansions generated the first three
segments, while the remaining segments are part of a one-
shot path. The white arrow indicates the transition point. In
(b), an obstacle (red) causes A* to reverse and maneuver
around the obstacle before a one-shot path reaches the goal.

accurate. Note that it is possible to seed the model-based
optimization using polynomial parameters that have not been
optimized beforehand. However, we opted for this two-step
approach since the first optimization step is faster than the
model-based one and often provides an initial guess that
requires just one further model-based iteration.

The trajectory computed by the model for the final value
of q is checked for collisions (as obstacles are not considered
during optimization) and evaluated using A*’s cost function.
By attaching the trajectory to the initial segment ending at
node nstart, we obtain a valid solution and store it if its total
cost is lower than the cost of the best solution found so far.
An example of a one-shot trajectory is shown in Figure 3.

C. Pure-Pursuit Expansions

As mentioned before, the need for discretization of control
inputs in A* can result in paths that are not smooth, in the
sense that they contain unnatural swerves. This makes it hard
to accurately follow a smooth reference path such as the
center line of a lane. While finer discretization alleviates this
problem, it comes at the cost of higher computational load.
Other authors (e.g., [2], [6], [5]) address this issue by first
planning a coarse path using A* with a limited number of
motion primitives to retain efficiency. In a second step, the
path is smoothed using numerical optimization. The problem
with this approach is that it can fail in scenarios requiring
highly precise maneuvering (see Figure 1), as the coarse
discretization in the first step may prevent the planner from
finding any solution at all.

This is why we developed pure-pursuit expansions, an
alternative method of generating trajectories that smoothly
follow the course of the road. Pure pursuit [19] is a well-
known path-tracking algorithm that is easy to implement and
tune. Moreover, its computational requirements are modest,
which makes it suitable for use in combination with A*.

Given a reference path, the intersection point pi of the
path and a circle of radius l (the lookahead distance) around

4711

(a)

(b)

Fig. 4: Pure-pursuit-based trajectories (green) in simulated
scenarios (reference path: cyan). In the obstacle-free case
(a), the trajectory consist entirely of one-meter pure-pursuit
segments. In (b), regular A* expansions reverse and turn
left in order to avoid the obstacle (red) before pure-pursuit
expansions take over (indicated by the white arrow).

the vehicle’s rear axle center is chosen as the next goal.
[19] shows that the vehicle would reach p by instantaneously
assuming (and keeping) a curvature of cpp

0 = 2
l2 ∆y, where

∆y is the signed lateral distance between the vehicle’s
heading vector and pi.

When performing a pure-pursuit expansion of a node with
configuration (x, y, ψ, c0, v), we determine the goal point on
the reference path and compute the required curvature cpp

0

as described above. We then generate a one-meter clothoid
segment starting at (x, y, ψ, c0). Its curvature rate is obtained
by passing c0, cpp

0 and v to FeasibleCurvatureRate in Algo-
rithm 1. Next, a new goal point is chosen based on the end
position of the newly added clothoid arc, and the procedure
is repeated until the total length of the added arcs reaches
the regular A* arc length L. We then evaluate the arcs’ costs
and add a node whose configuration corresponds to the final
configuration of the last arc.

The rationale behind computing multiple short arcs is that
pure pursuit needs to frequently choose new goal points to
yield smooth trajectories. Figure 4 shows two examples of
pure-pursuit-based trajectories.

IV. EXPERIMENTAL RESULTS

A. Practical Experiments

The algorithm was evaluated over the course of several
weeks of daily test drives lasting multiple hours each. It was
used on two autonomous vehicles equipped with standard
multi-core machines. The first one was a regular electric car
retrofitted with sensors and actuators for autonomous driving.
It perceived its environment using two Velodyne HDL-32E
LiDARs at the front as well as a Velodyne VLP-16 mounted
at the back. RTK-GPS was used for accurate localization on
a lane net constructed from OpenStreetMap1 data. However,
an a-priori grid map of the environment was not available,
which means all obstacles had to be detected on-the-fly.

1http://www.openstreetmap.org/

The test site was a mock urban environment consisting
of narrow lanes and multiple sharp turns whose curvature
exceeded the vehicle’s maximum curvature, forcing it to veer
off the lane’s center line in order to make the turn (see Figure
1). Moreover, pedestrians, cyclists and other drivers had to
be avoided. As the tests were part of an industrial project
subject to a confidentiality agreement, we cannot provide
images or video footage at this point.

The second test platform was our own autonomous VW
Touareg MuCAR-3 (Munich Cognitive Autonomous Robot
Car, 3rd Generation). As with the first vehicle, RTK-GPS was
used for localization on the lane net of our test site. Static
and dynamic obstacles were extracted from the point cloud
of a single Velodyne HDL-64E mounted atop the vehicle.

Figure 5 shows part of a route driven during testing. While
the road’s dimensions were normal in this case, the scenario
featured several challenges, as the vehicle had to give right
of way, navigate through a chicane, react to a pedestrian
jumping in front of the car, and deal with a wrong-way driver.
Video footage of the test is available online2. As can be
seen in the video, the vehicle actually followed the lane’s
center line reasonably closely where possible, even though
the inaccurate aerial image in Figure 5 suggests otherwise.

The distance driven in this scenario was 750 m. In total, the
planner was invoked 288 times. It was triggered whenever an
obstacle appeared on the existing trajectory or after covering
a distance of at least 3 m on the trajectory. Goal poses were
extracted from the global route 30 m ahead of the vehicle.
During each regular A* expansion, up to 18 child nodes were
generated (9 with the same velocity, 9 with reduced velocity)
when the vehicle was driving. When it was standing, only 14
new nodes were added (9 with the minimum positive velocity
1 m

s , 5 with the fixed negative velocity −1 m
s). The arc length

was set to 3 m. From each expanded node, the planner
attempted to find one-shot trajectories to two goals: one on
the same lane and one on the opposite lane for obstacle
avoidance. The average times for the computation of one-
shot trajectories and pure-pursuit edges were 2.5 · 10−2 ms
and 7.8 · 10−3 ms, respectively. The end point accuracy of
one-shot trajectories was set to 0.1 m in x and y, 1 deg in ψ
and 10−5 1

m in c0.
On average, the planner found a feasible trajectory within

less than 0.01 s, with a worst-case time of 0.108 s. As it
usually finds better trajectories after this initial solution, its
time-limit was set to 0.4 s. During this time, it found an
average of 3211 potential solutions in each cycle.

We also looked at the time needed to find a trajectory
generated purely from A* expansions (a pure A* solution)
compared to trajectories containing one-shot segments (a
one-shot solution). On average, the first pure A* solution was
found after 0.0218 s, whereas the first one-shot solution was
already found after 0.0104 s, a speed-up of approximately
52%. In the worst case, the ratio is similar: while the planner
needed 0.3213 s to find the first pure A* solution, the first
one-shot solution was already found after 0.1621 s.

2http://www.mucar3.de/iros2016-planning

4712

Fig. 5: Part of MuCAR-3’s route (blue) during a practical
experiment. (Note that inaccuracies in the aerial image
wrongfully suggest that the car left its lane unnecessarily
in some cases.) Starting at A, the vehicle had to give right
of way to another car before making a left turn (B). At C,
an obstacle forced MuCAR-3 to leave the right lane and
return almost immediately to avoid a second obstacle in the
left lane. Next (D), a pedestrian jumped in front of the car,
forcing it to perform an emergency stop and plan an evasive
trajectory. At (E), a wrong-way driver blocked the vehicle’s
path, causing it to stop again, reverse and move around the
obstacle. (Aerial image: GeoBasis-DE/BKG, Google)

B. Simulation Experiment

In order to analyze whether the extensions actually help
in producing trajectories that closely follow the course of
the road, we had a simulated vehicle drive 777 m along a
mostly smooth, easily drivable reference path. (Simulation
was chosen so we could guarantee that any deviation from
the path was the planner’s fault.) Using regular A* without
extensions, the average Euclidean distance between the ref-
erence path and the vehicle’s rear axle center was 0.089 m.
With one-shot expansions added, it was 0.049 m. Using both
one-shot and pure-pursuit expansions, the distance was only
0.013 m. This shows that our extensions improve accuracy
when a high-quality reference path exists.

V. CONCLUSION AND FUTURE WORK

We have presented a real-time trajectory planning algo-
rithm for urban autonomous driving in highly constrained
environments. Our approach combines combinatorial plan-
ning with numerical optimization and simulated control. As
a result, the planner is capable of generating both complex
maneuvers and smooth paths without the need for parameter
adjustment or switching of algorithms by a behavioral layer.
The algorithm was successfully evaluated on two different
vehicles during weeks of practical experiments.

In the future, we intend to improve the algorithm’s han-
dling of dynamic objects in order to enable it to perform

more aggressive maneuvers instead of acting overly cautious,
as it does now. Furthermore, we would like to analyze
whether the extensions described here can improve the
planner’s performance in unstructured environments where
reliable lane net data is not available.

REFERENCES

[1] C. Urmson, J. Anhalt, et al., “Autonomous Driving in Urban Envi-
ronments: Boss and the Urban Challenge,” Journal of Field Robotics,
vol. 25, no. 8, pp. 425–466, 2008.

[2] M. Montemerlo, J. Becker, et al., “Junior: The Stanford entry in the
Urban Challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 569–
597, 2008.

[3] T. Howard and A. Kelly, “Optimal Rough Terrain Trajectory Gen-
eration for Wheeled Mobile Robots,” The International Journal of
Robotics Research, vol. 26, no. 2, pp. 141–166, 2007.

[4] J. A. Reeds and L. A. Shepp, “Optimal Paths for a Car that Goes both
Forwards and Backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 1961–1976, 1990.

[5] H. Andreasson, J. Saarinen, et al., “Fast, Continuous State Path
Smoothing to Improve Navigation Accuracy,” in Proc. IEEE Int’l Conf.
on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, pp.
662–669.

[6] J.-W. Choi and K. Huhtala, “Constrained Path Optimization with
Bézier Curve Primitives,” in Proc. IEEE/RSJ Int’l Conf. on Intelligent
Robots and Systems (IROS), Chicago, IL, USA, 2014, pp. 246–251.

[7] A. Bacha, C. Bauman, et al., “Odin: Team VictorTango’s Entry in the
DARPA Urban Challenge,” Journal of Field Robotics, vol. 25, no. 8,
pp. 467–492, 2008.

[8] J. Leonard, J. How, et al., “A Perception-Driven Autonomous Urban
Vehicle,” Journal of Field Robotics, vol. 25, no. 10, pp. 727–774,
2008.

[9] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion
Planning for Autonomous Driving with a Conformal Spatiotemporal
Lattice,” in Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA), Shanghai, China, 2011, pp. 4889–4895.

[10] T. Gu, J. Atwood, et al., “Tunable and Stable Real-Time Trajectory
Planning for Urban Autonomous Driving,” in Proc. IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems (IROS), Hamburg, Germany,
2015, pp. 250–256.

[11] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal Trajec-
tories for Time-critical Street Scenarios Using Discretized Terminal
Manifolds,” The International Journal of Robotics Research, vol. 31,
no. 3, pp. 346–359, 2012.

[12] U. Schwesinger, M. Rufli, P. Furgale, and R. Siegwart, “A Sampling-
Based Partial Motion Planning Framework for System-Compliant
Navigation along a Reference Path,” in Proc. IEEE Intelligent Vehicles
Symposium (IV), Gold Coast, QLD, Australia, 2013, pp. 391–396.

[13] J. Ziegler, P. Bender, et al., “Making Bertha Drive - An Autonomous
Journey on a Historic Route,” IEEE Intelligent Transportation Systems
Magazine, vol. 6, no. 2, pp. 8–20, 2014.

[14] D. Fassbender, A. Mueller, and H. J. Wuensche, “Trajectory Planning
for Car-Like Robots in Unknown, Unstructured Environments,” in
Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS),
Chicago, IL, USA, 2014, pp. 3630–3635.

[15] L. E. Dubins, “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[16] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path Planning
for Autonomous Vehicles in Unknown Semi-structured Environments,”
The International Journal of Robotics Research, vol. 29, no. 5, pp.
485–501, 2010.

[17] A. Kelly and B. Nagy, “Reactive Nonholonomic Trajectory Genera-
tion via Parametric Optimal Control,” The International Journal of
Robotics Research, vol. 22, no. 7–8, pp. 583–601, 2003.

[18] M. McNaughton, “Parallel Algorithms for Real-time Motion Plan-
ning,” Ph.D. dissertation, Carnegie Mellon University, 2011.

[19] J. M. Snider, “Automatic Steering Methods for Autonomous Automo-
bile Path Tracking,” Robotics Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, Tech. Rep. CMU-RI-TR-09-08, February
2009.

4713

