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Abstract— Active Constraint Learning (ACL) is continuously
gaining popularity in the area of constrained clustering due
to its ability to achieve performance gains via incorporating
minimal feedback from a human annotator for selected in-
stances. For constrained clustering algorithms, such instances
are integrated in the form of Must-Link (ML) and Cannot-
Link (CL) constraints. Existing iterative uncertainty reduction
schemes, introduce high computational burden particularly
when they process larger datasets that are usually present in
computer vision and visual learning applications. For scenarios
that multiple agents (i.e., robots) require user feedback for per-
forming recognition tasks, minimizing the interaction between
the user and the agents, without compromising performance,
is an essential task.

In this study, a non-iterative ACL scheme with proven
performance benefits is presented. We select to demonstrate
the effectiveness of our methodology by building on the well
known K-Means algorithm for clustering; one can easily extend
it to alternative clustering schemes. The proposed methodology
introduces the use of the Silhouette values, conventionally
used for measuring clustering performance, in order to rank
the degree of information content of the various samples. In
addition, an efficient greedy selection scheme was devised for
selecting the most informative samples for human annotation.
To the best of our knowledge, this is the first active constrained
clustering methodology with the ability to process computer
vision datasets that this study targets. Performance results are
shown on various computer vision benchmarks and support the
merits of adopting the proposed scheme.

Index Terms— Visual Learning, Active Constrained Cluster-
ing, Image Clustering Uncertainty Management

I. INTRODUCTION

In the contemporary times of big data analytics, generating
quality ground truth data annotations for the purpose of train-
ing various machine learning algorithms has become a major
challenge. As human annotators are scarce and expensive,
targeting manual resources to subsets of datasets that are
the most informative, is essential. Such active selection of
subsets has by now become a major sub-field in machine
learning. The objective of active schemes is to enable the
creation of correct and coherent clusters that capture the
underlying structure of the data. Selection and ordering of
samples for processing is critical to the overall performance
of the algorithms since a poorly selected set of samples can
have adverse effects ([5], [7] and [17]).

While iterative cluster refinement is commonly utilized for
active feedback in large datasets, batch mode active selection
is known to be useful in several situations. Such examples
are concerned with multi-agent tasks for which the number
of times that communication is established between an agent
and a human annotator needs to be minimized. To this end,

978-1-5090-3761-2/16/$31.00 ©2016 IEEE

morellas@cs.umn.edu npapas@cs.umn.edu

09
08
0.7
0.6
05

04

03

0.2

Fig. 1: Silhouette values distribution on a 4-cluster Gaussian
synthetic dataset. Red color indicates points of high uncer-
tainty and therefore high informativeness.

0.1

we formulate a novel objective that balances between the un-
certainty in cluster memberships and the spatial diversity of
data points in the batch selection; this goes beyond a simple
ranking of samples based on uncertainty. An efficient greedy
selection approach was also introduced towards optimizing
the derived objective.

In contrast to the standard iterative active learning schemes
for ACL, this study introduces a non-iterative active sam-
pling methodology, which exploits a notion of information
content existing, but not yet discovered, in the data. The non-
iterative nature of the proposed methodology lends itself to
the processing of datasets which was not computationally
feasible with iterative ACL schemes. In addition, ensemble
ACL techniques face equivalent computational burdens with
their iterative counterparts. The aforementioned computa-
tional load of iterative and ensemble ACL schemes is so
substantial that as of now, to the best of our knowledge,
performance baselines cannot be found at the level of data
complexity (dimensionality and number of samples) this
effort targets.

Active selection of informative ML and CL constraints
was enabled by the integration of the Silhouette values [13],
conventionally used for clustering performance evaluation,
and by building on the notion of informativeness of pairwise
constraints [5]. An uncertainty sampling scheme is proposed
that incorporates in an initial step the results of an unrefined,
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yet not committing, clustering task that assigns to each
sample a value in the range [-1,1]; larger values indicate
a confident (i.e., less informative) assignment. Figure 1
illustrates how the deployment of the silhouette values char-
acterizes the informativeness of various samples on a 4-
cluster Gaussian synthetic dataset. Points at the overlapping
regions of the clusters receive a low silhouette value (i.e.,
high informativeness). It is therefore apparent that high
informative value of samples reflects the degree of confusion
that clustering algorithms face in correctly clustering the
respective data points. The strength of the Silhouette value
in an ACL scheme will be discussed at Section III-A.

The selection of constraints that utilize the Silhouette
values, leads to the creation of a constraint matrix via a 4-step
process. In the first step, an unrefined clustering is performed
prior to the assignment (second step) of Silhouette values;
the K-Means algorithm was considered. Subsequently, a
greedy selection scheme decides about the samples to be
included in the final constraint matrix based on the computed
Silhouette values as presented in Section IV-B. In the last
step, the COP-KMeans algorithm [16] uses the constraint
matrix, so produced in the previous steps, resulting in a
more refined, partitioning of the data. The two selected
clustering algorithms (K-Means and COP-KMeans) could
be easily substituted by other clustering tools of choice,
nevertheless, we select to present our results based on those
two. Experimental results presented below, support the merit
of the devised approach and prove the utility of the proposed
ACL scheme.

II. RELATED WORK

The literature in the domain of active learning is under-
going a continuous growth, following the increasing inter-
est in the computational benefits of active methods. For
a thorough review of active learning methods the reader
can consider [12] and [14]. Even though the broader active
learning literature experiences a rapid growth, the domain of
ACL for constrained clustering algorithms is following at a
slower pace. As Davidson et al. [5] has shown, constraints
should be cautiously integrated in constrained clustering
algorithms. Basu et al. [2] paved the way for active constraint
selection by deriving an active version of the constrained K-
Means [3]. In particular, in [2] an active seeding approach
was devised, utilizing samples at maximal distances between
them (furthest-first query selection) built on [3]. The work
of Bilenko et al. [3], has served as the evaluation workhorse
of numerous studies along the lines of active constraint
selection [2], [7], [8], [10], [20].

Xiong et al. [20] as well as Huang and Lam [8] utilized
active selection techniques, embedded in iterative uncertainty
reduction schemes that capitalized on the notion of neighbor-
hoods in the feature space. Mallapragada et al. [10] derived
the min-max query selection criterion which was suggested
as an alternative to the furthest-first query selection of Basu
et al. [2]. Greene and Cunningham [7] proposed a non-
iterative ACL scheme for which, the basis, was an ensemble
of base clusterings. Thresholds, placed on a co-association

matrix whose entries denote the fraction of clusterings in
the ensemble for which two points are grouped together,
revealed the constraints of the highest value. Biswas and
Jacobs [4] developed an elegant methodology that capitalized
on Minimum Spanning Forest clustering towards grouping
images with their devised scheme termed Active Hierar-
chical Agglomerative Clustering with Constraints (Active
HACC). The uncertainty measure adopted in [4] was the
magnitude of change in the Jaccard Coefficient (commonly
used for measuring clustering performance) resulting from
constraint integrations. The derived &' (n*lg(n)) complexity
per constraint selection for an n-sample problem makes
its deployment prohibitive when processing 1K samples or
more. Even in an accelerated version of Active-HACC, the
complexity still remained high (&' (n3lg(n)) per constraint
selection) while the sophisticated implementation makes the
use of this scheme difficult.

In addition to the previous techniques, the area of spectral
clustering has also been altered in order to accommodate
feedback from a human annotator. Xu et al. [21] made
the first attempt towards Active Spectral Clustering (ASC)
with the ACCESS (Active Constrained Clustering by Ex-
amining Spectral eigenvectorS) algorithm. The eigenvectors
of a similarity matrix are used in order to identify points
at the boundaries of clusters and user feedback is used
to either strengthen or weaken similarities of such points.
Shamir et al. [15] as well as Wauthier et al. [19] have
completed work in the domain of ASC utilizing only partial
knowledge of the similarity matrix. Wang and Davidson [18]
iteratively identified constraints that resulted in maximal
error reduction, using spectral information.

The above schemes use an iterative strategy in general, i.e.,
each iteration querying the user for a data class membership,
later repeating the constrained clustering step. Unfortunately,
such schemes might not work for large datasets; for which
batch mode active selection might be the appropriate. Thus,
we further propose a non-iterative Silhouete metric based
active sampling scheme in which the batch of data points
to be queried are selected by optimizing a cost function
that balances the uncertainty of points regarding their cluster
memberships and the diversity of their spatial arrangements.
The latter property helps avoid points that are uncertain and
are also in the proximity of other uncertain points, whose
labels can be obtained via label propagation. However, our
objective is combinatorial and thus difficult to maximize.
We propose an approximate but efficient greedy algorithm
to solve this objective.

III. UNCERTAINTY MEASURE FOR ACTIVE SELECTION

ML and CL constraints are embedded onto the proposed
scheme in the form of a matrix. Constraint matrices are
symmetric, square matrices of size equal to the number
of samples and they capture pairwise relationships between
selected points. For example, for [ selected points (é),
pairwise constraints are derived based on the agreement or
disagreement provided by the user labels. While random
techniques tend to not take into account the difficulty in
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clustering particular points, the proposed ACL scheme at-
tempts to principally rank and subsequently select informa-
tive samples (i.e., high uncertainty or low Silhouette values),
substantially aiding in the clustering process. Davidson et
al. [5] and Wagstaff et al. [17] denoted the importance of
using appropriate constraint matrices in the context of con-
strained clustering. In their work, they explicitly identified
the importance in and underlined the lack of a procedure
to construct constraint matrices that enhance the process
of maximizing the information content embedded in the
constraint matrix.

In that context, pairwise constraints for points that lie
simultaneously near the boundaries of multiple clusters, thus
exhibiting a higher degree of difficulty during clustering
(i.e., high Silhouette value), should be stronger candidates in
the selection process. In particular, CL constraints for such
points can steer the algorithm to finding optimal solutions
and subsequently providing a clustering assignment of higher
accuracy.

A. Uncertainty Sampling Metric

Constructing a constraint matrix of high informativeness
was made possible, in this work, by the embedding of the
Silhouette values [13] which from now on will be referred
to as Uncertainty Sampling Measure (USM). The concept
of Silhouettes (not to be confused with the silhouettes of
objects) was proposed by Rousseew [13] as a performance
measure in cluster analysis. However, in this context, we
elevate the concept of Silhouettes to that of a USM. The
USM computation is based on a measure of closeness
between data points, as well as on the assignment of points
to clusters and is defined as follows: suppose after an initial
clustering, let the data point x; be assigned to cluster ,,
then

g = Pz 0

max(a;, 3;)
1

= [m=]

where, «; > || @i — x; ||* is the average distance

of point ¢ with the rest of the points that belong in cluster

7w, and B; = yigﬁ S || @ — 2 ||? is the minimum
lem,

average distance between pzoint ¢ and all clusters that ¢ is not
a member; closeness of data points is based on Euclidean
distance, although other metrics can be used. USM values
are associated with all points in the dataset. As is clear from
Equation (1), S; ranges in [—1,1]. A value of 1 characterizes
a sample of low clustering uncertainty, while a value of -1
corresponds to a sample of high uncertainty and therefore
high informativeness.

The USM can at a high level, be viewed as a best
versus second best measure as underlined by Equation (1).
One example of the proposed strategy on a synthetic, 4-
cluster Gaussian dataset is presented in Figure 2. As it is
shown, the proposed ACL scheme automatically selects the
points (denoted by the red triangles) that contain the highest
informative value, which are located at the regions where the
clusters overlap. Furthermore, points that are not proximal

Fig. 2: Active query sampling for the 4-cluster Gaussian
dataset using USM values. Points in red denote samples that
were selected by the ACL scheme.

to cluster centers are also considered as uncertain and thus
selected by the proposed scheme.

IV. ACTIVE CONSTRAINT LEARNING

The proposed ACL scheme capitalizes on the aforemen-
tioned notion of informativeness (Equation (1)) and con-
structs a sampling scheme around it. Below, we devise a
four-step procedure for refining the clustering outcome:

1) Compute an unrefined clustering of the dataset.

2) Compute the resulting USM values.

3) Select the most informative samples to query the user

using our greedy selection scheme.

4) Execute COP-Kmeans to deliver the final clustering.

Each one of the steps will be discussed at more length
next.

A. Unrefined Clustering

The deployment of an unrefined clustering is the first step
of the proposed ACL scheme. Although, the choice of such
an algorithm is not committing, experimentation with the K-
Means algorithm and its kernelized version, Kernel K-Means
was performed. The rationale behind the choice of working
in a kernel space is driven by the inherent limitation of
Euclidean metric to faithfully encode the closeness of points
that generally lie on non-linear manifolds.

Once the unrefined clustering step is performed in a kernel
space, USM values are obtained for all the transformed
samples in the kernel space. It is interesting to notice the
new form that coefficients a; and (; of Equation (1) take
in the kernel space as presented in Equations (2) and (3),
where K (x;,x;) = (¢(x;), ¢(x;)). For this study 4 kernels
were considered for purposes of demonstration as presented
in Table I; linear, polynomial, sigmoid and Radial Basis
Function. One should note that no extensive efforts were
expended to find the optimal performance kernel.

L Z (K(:CZ,CCZ) + K(xj, ;) — 2K(LL‘¢,LL‘]'))

o =
| Tz ‘ JjeT
2
1
Bi min > (K(ﬂﬁmxi)*-K(ﬂCl,ﬂ?z) _2K($i7$l))
2! lem,,

3)
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TABLE I: Tested kernel functions.
Linear Kemnel | K (z;,7;) = 2lz;+ ¢
Polynomial Kernel | Kp(z;,7;) = (axlz; + c)?
Sigmoid Kernel | Kg(z;,z;) = tanh(azTx; + c)
RBF Kernel )

) :exp(_”“hQa!I;JH )

B. Greedy Query selection

In this section the process of optimally selecting the most
informative samples is presented. An optimization problem,
as formulated in Equation (4), attempts to find those samples
that balance informativeness and spatial dispersion along
the boundaries between clusters. This is reflected in the
two terms of Equation (4). The first term accounts for the
informativeness of the sample while the second disperses
the queried samples along the boundaries. The combinatorial
nature of the formulation, yields an NP hard problem whose
solution is obtained via a greedy approximation. The greedy
component of the scheme sequentially augments the list of
selected samples such that maximum gain can be achieved at
every step. The connection between the current formulation
and optimization over submodular functions is apparent and
under ongoing investigation.

maximize Zg% + Z d(a:, ;)
QCc{1,....n} €0 (i#7)EQ S
subject to  |Q| = No

where @ is the near optimal set of queries that the algorithm
seeks, N is the number of queries the algorithm is allowed
to perform, S, = =5 and J(xl,l]) is the squared
235

Euclidean distance norlﬁ;alized with respect to the sum of
distances for all active selection candidates per round as
presented in line 8 of Algorithm 1. The reason for normaliz-
ing distances is so that uncertainty and distance are equally
considered when deciding about the next point to augment
the set of actively selected points, restricting the second term
to rapidly grow and musk the impact of USM in the selection
process.

Algorithm 1 provides the pseudocode for the developed
greedy scheme. L%J points are selected for cluster ¢ by
sequentially augmenting the list (); with candidates that
achieve maximal gains at every step. First, USM values
are transformed from the original range of [—1,1] to the
new range of [0, 1] thus becoming appropriate for this max-
imization formulation as shown in line 5 of the pseudocode.
However, this transformation results in the assignment of
greater USM values to high informative samples in contrast
to the initial range interpretation. Line 6 is responsible for
initializing the query list @); of cluster i, with its first two
samples which are derived such that they contain the largest
amount of information while being far apart. Finally, the
while loop in lines 7-11 recursively augments @); by the
sample in cluster 7 that achieves the largest incremental gain
for Equation (4) when added to the set.

Algorithm 1: Greedy Query Selection

Data: data set X,, x4, labels L;x,, number of queries
Ng, number of clusters k, USM values Siyn.
Result: Near optimal set of queries Q.
Let (Q1,Q2,...,Qk) be the collection of queries for
every cluster;

—

2 for i < 1 to k do

3 S = get of USM values of points in cluster ;
4 X = get of samples in cluster ;

5 S — zliiss(@)) (Transformed USM values);

6 | Qi={QiUuUv} | (o) (S8 | 2w — 2 |1?)
w,v

p = 2 (Counter of selected samples for cluster i);
7 while p < L%J do

(1) ;H’ch—er?
|| (50 )
9 where 7 € Q;;
10 Qi ={QiUc};
11 p++
12 return (Q1,Q>,...,Q%)

Operations at lines 3 and 4 of the pseudocode have
complexity of &'(n), while line 6 results in &'(n) for a
precomputed pairwise distance matrix. Finally, the block
of lines 7-11 has complexity of ﬁ(nz%). The overall
complexity of the proposed greedy selection structure is
0(n®Ng). This is orders of magnitude lower than available
alternatives as also presented in the following section.

V. EXPERIMENTS

The performance of the selected uncertainty sampling
scheme was demonstrated through a series of experiments on
synthetic as well as benchmark computer vision datasets. As
mentioned in earlier sections to the best of our knowledge,
alternative active constrained clustering schemes for making
comparisons at this scale are not available. Figure 3 supports
this claim by establishing a complexity comparison with [4].
The necessary operations are orders of magnitude larger
when compared to the proposed selection scheme. The blue
bars correspond to our selection scheme, while cyan and
yellow bars correspond to Fast-Active-HACC and Active-
HACC respectively. It should also be noted that the y-axes
in Figure 3 appears in logarithmic scale. Even though [4]
requests pairwise constraints rather than ordinal feedback
this comparison focusing on the selection scheme can still
provided useful conclusions on the efficiency of our scheme.
The main focus of this section is to present the performance
gains when the proposed ACL scheme is adopted against
random constraint selection.

The experiments performed, used a variable number of
allowable queries. Thirty (30) iterations were executed for
each of the available cases and the respective results were
averaged to extract the mean performance. The performance
of the ACL scheme was tested in both feature as well as a

4030



C i C ity C

for 1K samples

50 100 150 200 250 300

Number of Queries Submitted

]

lOur Selection Scheme

2%

. Fast-Active-HACC [4]

‘ ‘AclwerHACC “

>

Number of Operations (x105)
3

S

00

Fig. 3: Comparing the required operations for providing
active feedback on a 1K sample dataset.

kernel space. Four different kernels (Table I) were tested on
each dataset and the results for the one that performed best
are presented in the following sections. The effort on tuning
the parameters of the selected kernels was minor since this
deviates from the scope of this study.

Although the proposed ACL scheme promotes a more
consistent and repeated selection of samples, deviation from
this behavior is attributed to the specific clustering procedure
deployed during the first step of the process; this also justifies
the 30 iterations performed to obtain a mean performance.
All comparisons were evaluated using the Adjusted Rand
index (AR index) which measures similarities between dif-
ferent clusterings with higher values corresponding to better
performance results.

A. Results on the 4-cluster Gaussian dataset

The first dataset processed in this work is illustrated in
Figure 2 and consists of 4 Gaussian clusters, each containing
200 points and exhibiting two overlapping regions. The
results obtained on this dataset are presented in Figure 4 for
7 different cases of queries allowed. This corresponds to the
following percentages of labels provided to the algorithm:
(5%, 10%, 15%, 20%, 25%, 30% and 35%). For the case
that 15% of the labels were provided to the algorithm, the
proposed ACL scheme in the feature space achieved perfor-
mance gains of 8% when compared with random selection.
In addition, by applying a polynomial kernel transformation
to the dataset, performance gains that reached 6% were also
achieved, when compared with the random selection strategy.

An important observation on the results of this experiment
is that the ACL scheme achieves an equivalent performance
with the random selection scheme for a fraction of the
supervision. One such example is the case when 35% of the
labels were used via a random selection scheme yielding
an AR index of 83.0%, when only 20% of the labels
achieved an equivalent performance via the ACL scheme.
The ACL scheme for the transformed space was not able
to outperform the ACL scheme when directly applied to
the feature space. A more appropriate kernel transformation
could have resulted in a more refined clustering outcome,
nevertheless identifying optimal transformations goes beyond
the scope of this study.

0.9 - —ACL feature space
——Random sampling
i =-ACL kernel space
x
(o)
2038 ]
14
<
07 lu,

5% 10% 15% 20% 25% 30% 35%
Percentage of samples queried

Fig. 4: Performance results on the 4-cluster Gaussian syn-
thetic dataset. For ACL in kernel space a polynomial kernel
was utilized.

B. Results on the MIT Scene dataset

The MIT outdoor scene dataset (http://
people.csail.mit.edu/torralba/code/
spatialenvelope) is a collection of 2688, RGB
images of size 256x256 that are categorized in the following
8 categories: coast, mountain, forest, open country, street,
inside city, tall buildings and highways. Figure 5 illustrates
one sample from each of the aforementioned categories.
In the process of clustering the MIT dataset, GIST
descriptors [11] were extracted which resulted in 512
dimensional vector representations for every sample. Due
to the high variability that each clusters exhibits, the MIT
scene dataset still remains a challenge for machine learning
algorithms.

Fig. 5: Samples from the MIT dataset.

The results on the MIT scene dataset demonstrate the
strength of the proposed methodology as presented in Fig-
ure 6. Performing the unrefined clustering step in a kernel
space transformed by a sigmoid kernel, provided the highest
AR index values for the whole spectrum of the available
queries (6%, 12%, 18%, 24%, 30%, 36%). It can be seen
that for the ACL scheme in the kernel space, it achieved
12% increase in the AR index for the case that 24% of the
labels were provided to the algorithm. Another observation
that supports the practicality of the ACL scheme can be
visualized by the smaller number of labels that the proposed
scheme requires when compared to random selection. In
particular for the MIT dataset, the ACL strategy in the kernel
space was able to achieve an AR index of 61.5% for the
case that 18% of the labels were utilized. In contrast, the
random selection strategy required 40% more labels in order
to achieve an equivalent performance.

C. Results on the USPS dataset

The USPS handwritten digit dataset is one of the most
popular benchmark datasets in the field of computer vision
since its creation; in most cases it is divided in a training and
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Fig. 6: Performance results on the MIT scene dataset. For
ACL in kernel space a sigmoid kernel was utilized.

a test set. One sample from each category of the USPS is
presented in Figure 7. For this study the USPS dataset was
obtained along with the software package accompanying the
work of Li et al. [9] in semi-supervised clustering (http:
//www.ee.columbia.edu/~zgli/). It contains a se-
lection of 9,298 gray-scale images of size 16x16. The feature
vector for each sample is a 256-dimensional representation
of the image formed by concatenating the rows of the image.
Even though several classification approaches have obtained
almost perfect results on the USPS dataset, it still remains a
demanding task for clustering algorithms.

S

= >

Fig. 7: Samples from the USPS dataset.

For the USPS dataset 5 cases of allowed queries were ex-
amined (6%, 11%, 15%, 19%, 23%) as presented in Figure 8.
The ACL scheme in the feature space was able to provide
performance gains that reached 6.2% when compared with
the random selection scheme for the case that 19% of the
labels were provided to the algorithm. For the case that 6%
of the labels were utilized, the random selection scheme
performed better than the ACL scheme. For most query
percentages the proposed scheme required 4% less labels
than the random selection scheme in order to achieve the
same or higher performance which in this dataset translates
in 370 labels. Finally, for the case that a sigmoid kernel
transformation was applied to the dataset, the performance
curve was not superior to the random selection scheme for
2 out of the 5 number of queries.

o8 -=-ACL feature space

~~ |=-Random Selection
--ACL kernel space

o
3

AR index

g
)

056% 1% 15% 19%  23%

Percentage of samples queried

Fig. 8: Performance results on the USPS dataset. For ACL
in kernel space a sigmoid kernel was utilized.

Fig. 9: Samples from 10 categories of the Caltech 101
dataset.

D. Results on the Caltech 101 dataset

The Caltech 101 dataset is a collection of 9,144 images
of 102 categories with RGB images of size, approximately,
200x300 pixels [6]. Ten (10) random samples from the
Caltech 101 are presented in Figure 9. For this particular
dataset dimensionality reduction techniques were applied
in order to process the data. GIST descriptors [11] were
extracted and via a PCA analysis, the principal components
that accounted for 85% of the variance were identified.
This reduced the dimensions of the dataset to 60 from the
original 512. Five (5) cases of allowed queries were used for
the experiments on this dataset (5.5%, 11%, 16.5%, 22%,
27.5%). Even though the obtained AR index on this dataset,
did not exceed 30%, this performance cannot be directly
compared against other methodologies that used this dataset.
For example the clustering performance presented in [1] on
Caltech 101, operating on a reduced number of samples
(1,959 instead of 9,144) and clusters (50 clusters rather than
102) reached an approximate 55% performance. Even though
the performance achieved in this study remains low, it can
still be used to draw conclusions regarding the behavior of
the proposed ACL scheme against random selection for the
complete set of data.

Specifically, as illustrated in Figure 10, the ACL scheme
in the feature space outperformed both the ACL method in
a transformed by a sigmoid kernel space as well as the
random selection scheme. Although the magnitude of the
performance gains on this dataset does not match the gains on
the previously discussed datasets, it was still able to reach an
increase of 2.2% for the case when 27.5% of the labels were
provided to the algorithm. One exception lies in the case that
algorithm received the minimum percentage of labels (5.5%).
This was the only case that the random selection performed
better than the two ACL schemes for the same reasons that
were discussed on the previous datasets (i.e., the selection of
high informative samples does not span the complete spatial
support of the clusters in the data representation space).

---ACL feature space
—Random selection
--ACL kernel space

AR index

g

0.15

5.5% 1% 165% 22% 275%
Percentage of samples queried

Fig. 10: Performance results on the Caltech 101 dataset. For
ACL in kernel space a sigmoid kernel was utilized.
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VI. DISCUSSION AND FUTURE WORK

This study introduced an ACL scheme for the analysis
of structurally complex datasets in constrained clustering
setups. The proposed scheme significantly differs from other
active methods since it can operate on datasets at the scale
(dimensionality and number of samples) of many popular
computer vision benchmarks. This ability is not present in
other efforts along the lines of active constrained clustering
due to their, in most cases, iterative manner of query selection
that involves recursive (or ensembles of) clusterings. A four
step process was devised towards actively selecting the most
informative samples for querying the user. First, an unrefined
clustering step derives a preliminary assignment of the data
in clusters that is then used to compute the proposed USM
values. This step can be executed both in the original feature
space or a kernel space using the kernel version of a selected
clustering algorithm as well as the derived version of the
USM in the kernel space. A greedy selection algorithm iden-
tifies samples that balance informativeness (USM values) and
spatial dispersion (closeness metrics) along the boundaries
between clusters which are later used to query the user. The
acquired labels for the selected samples are used to construct
a constraint matrix that summarizes the available pairwise
ML and CL relationships. A constrained clustering scheme
takes advantage of the derived ML and CL constraints to
provide a refined clustering for the data.

Experiments were performed on 4 different datasets; one
synthetic datasets of low dimensionality as well as 3 more
complex computer vision benchmarks. The obtained results,
which reached 12% of performance gains when adopting
the proposed ACL scheme, provide guarantees in adopting
this methodology. Future directions include the establishment
of a more computationally effective method for solving
the greedy selection problem in the context of submodu-
lar function optimization. Another future direction that is
currently under consideration, is to enhance the proposed
structure with additional directional information, as defined
by the fitting of local tangential hyperplanes. Finally, from
an application perspective the intention is to transition this
methodology in real world automation tasks. In such cases
even a small reduction in the number of necessary samples
for a targeted performance can transition the deployment of
such a system from practically unacceptable to feasible.

In a subsequent step the proposed scheme will be tested
in a real world scenario where multiple agents will utilize
the annotation effort of a human towards performing object
recognition tasks closing the loop between the theoretical
work that has been developed and a real world scenario.
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