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Visual Odometry
Part I: The First 30 Years and Fundamentals

By Davide Scaramuzza and Friedrich Fraundorfer

V
isual odometry (VO) is the process of estimating

the egomotion of an agent (e.g., vehicle, human,
and robot) using only the input of a single or

multiple cameras attached to it. Application domains
include robotics, wearable computing, augmented reality,
and automotive. The term VO was coined in 2004 by Nis-
ter in his landmark paper [1]. The term was chosen for its
similarity to wheel odometry, which incrementally esti-
mates the motion of a vehicle by integrating the number
of turns of its wheels over time. Likewise, VO operates by
incrementally estimating the pose of the vehicle through
examination of the changes that motion induces on the
images of its onboard cameras. For VO to work effec-
tively, there should be sufficient illumination in the envi-
ronment and a static scene with enough texture to allow
apparent motion to be extracted. Furthermore, consecu-
tive frames should be captured by ensuring that they have
sufficient scene overlap.

The advantage of VO with respect to wheel odometry is
that VO is not affected by wheel slip in uneven terrain or
other adverse conditions. It has been demonstrated that
compared to wheel odometry, VO provides more accurate
trajectory estimates, with relative position error ranging
from 0.1 to 2%. This capability makes VO an interesting
supplement to wheel odometry and, additionally, to other
navigation systems such as global positioning system
(GPS), inertial measurement units (IMUs), and laser
odometry (similar to VO, laser odometry estimates the
egomotion of a vehicle by scan-matching of consecutive
laser scans). In GPS-denied environments, such as under-
water and aerial, VO has utmost importance.

This two-part tutorial and survey provides a broad
introduction to VO and the research that has been under-
taken from 1980 to 2011. Although the first two decades
witnessed many offline implementations, only in the third
decade did real-time working systems flourish, which has
led VO to be used on another planet by two Mars-explora-
tion rovers for the first time. Part I (this tutorial) presents a
historical review of the first 30 years of research in this field
and its fundamentals. After a brief discussion on camera
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modeling and calibration, it describes the main motion-
estimation pipelines for both monocular and binocular
scheme, outlining pros and cons of each implementation.
Part II will deal with feature matching, robustness, and
applications. It will review the main point-feature detectors
used in VO and the different outlier-rejection schemes. Par-
ticular emphasis will be given to the random sample consen-
sus (RANSAC), and the distinct tricks devised to speed it up
will be discussed. Other topics covered will be error model-
ing, location recognition (or loop-closure detection), and
bundle adjustment.

This tutorial provides both the experienced and non-
expert user with guidelines and references to algorithms
to build a complete VO system. Since an ideal and unique
VO solution for every possible working environment
does not exist, the optimal solution should be chosen
carefully according to the specific navigation environ-
ment and the given computational resources.

History of Visual Odometry
The problem of recovering relative camera poses and
three-dimensional (3-D) structure from a set of camera
images (calibrated or noncalibrated) is known in the
computer vision community as structure from motion
(SFM). Its origins can be dated back to works such as [2]
and [3]. VO is a particular case of SFM. SFM is more gen-
eral and tackles the problem of 3-D reconstruction of
both the structure and camera poses from sequentially
ordered or unordered image sets. The final structure and
camera poses are typically refined with an offline optimi-
zation (i.e., bundle adjustment), whose computation time
grows with the number of images [4]. Conversely, VO
focuses on estimating the 3-D motion of the camera
sequentially—as a new frame arrives—and in real time.
Bundle adjustment can be used to refine the local estimate
of the trajectory.

The problem of estimating a vehicle’s egomotion from
visual input alone started in the early 1980s and was
described by Moravec [5]. It is interesting to observe that
most of the early research in VO [5]–[9] was done for
planetary rovers and was motivated by the NASA Mars
exploration program in the endeavor to provide all-terrain
rovers with the capability to measure their 6-degree-of-
freedom (DoF) motion in the presence of wheel slippage in
uneven and rough terrains.

The work of Moravec stands out not only for present-
ing the first motion-estimation pipeline—whose main
functioning blocks are still used today—but also for
describing one of the earliest corner detectors (after the
first one proposed in 1974 by Hannah [10]) which is
known today as the Moravec corner detector [11], a prede-
cessor of the one proposed by Forstner [12] and Harris
and Stephens [3], [82].

Moravec tested his work on a planetary rover equipped
with what he termed a slider stereo: a single camera sliding
on a rail. The robot moved in a stop-and-go fashion,

digitizing and analyzing images at every location. At each
stop, the camera slid horizontally taking nine pictures at
equidistant intervals. Corners were detected in an image
using his operator and matched along the epipolar lines of
the other eight frames using normalized cross correlation.
Potential matches at the next robot
locations were found again by correla-
tion using a coarse-to-fine strategy to
account for large-scale changes. Out-
liers were subsequently removed by
checking for depth inconsistencies in
the eight stereo pairs. Finally, motion
was computed as the rigid body
transformation to align the triangu-
lated 3-D points seen at two consecu-
tive robot positions. The system of
equation was solved via a weighted
least square, where the weights were
inversely proportional to the dis-
tance from the 3-D point.

Although Moravec used a single sliding camera, his
work belongs to the class of stereo VO algorithms. This
terminology accounts for the fact that the relative 3-D
position of the features is directly measured by triangula-
tion at every robot location and used to derive the relative
motion. Trinocular methods belong to the same class of
algorithms. The alternative to stereo vision is to use a
single camera. In this case, only bearing information is
available. The disadvantage is that motion can only be
recovered up to a scale factor. The absolute scale can then
be determined from direct measurements (e.g., measuring
the size of an element in the scene), motion constraints, or
from the integration with other sensors, such as IMU, air-
pressure, and range sensors. The interest in monocular
methods is due to the observation that stereo VO can
degenerate to the monocular case when the distance to the
scene is much larger than the stereo baseline (i.e., the dis-
tance between the two cameras). In this case, stereo vision
becomes ineffective and monocular methods must be used.
Over the years, monocular and stereo VOs have almost
progressed as two independent lines of research. In the
remainder of this section, we have surveyed the related
work in these fields.

Stereo VO
Most of the research done in VO has been produced using
stereo cameras. Building upon Moravec’s work, Matthies
and Shafer [6], [7] used a binocular system and Moravec’s
procedure for detecting and tracking corners. Instead of
using a scalar representation of the uncertainty as Moravec
did, they took advantage of the error covariance matrix of
the triangulated features and incorporated it into the
motion estimation step. Compared to Moravec, they dem-
onstrated superior results in trajectory recovery for a
planetary rover, with 2% relative error on a 5.5-m path.
Olson et al. [9], [13] later extended that work by
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introducing an absolute orientation sensor (e.g., compass
or omnidirectional camera) and using the Forstner corner
detector, which is significantly faster to compute than

Moravec’s operator. They showed that
the use of camera egomotion estimates
alone results in accumulation errors
with superlinear growth in the distance
traveled, leading to increased orienta-
tion errors. Conversely, when an abso-
lute orientation sensor is incorporated,
the error growth can be reduced to a
linear function of the distance traveled.
This led them to a relative position
error of 1:2% on a 20-m path.

Lacroix et al. [8] implemented a
stereo VO approach for planetary rovers similar to those
explained earlier. The difference lies in the selection of
key points. Instead of using the Forstner detector, they
used dense stereo and, then, selected the candidate key
points by analyzing the correlation function around its
peaks—an approach that was later exploited in [14], [15],
and other works. This choice was based on the observa-
tion that there is a strong correlation between the shape
of the correlation curve and the standard deviation of the
feature depth. This observation was later used by Cheng
et al. [16], [17] in their final VO implementation onboard
the Mars rovers. They improved on the earlier implemen-
tation by Olson et al. [9], [13] in two areas. First, after
using the Harris corner detector, they utilized the curva-
ture of the correlation function around the feature—as
proposed by Lacroix et al.—to define the error covariance
matrix of the image point. Second, as proposed by Nister
et al. [1], they used the random sample consensus (RAN-
SAC) RANSAC [18] in the least-squares motion estima-
tion step for outlier rejection.

A different approach to motion estimation and outlier
removal for an all-terrain rover was proposed by Milella
and Siegwart [14]. They used the Shi-Tomasi approach
[19] for corner detection, and similar to Lacroix, they
retained those points with high confidence in the stereo
disparity map. Motion estimation was then solved by first
using least squares, as in the methods earlier, and then the
iterative closest point (ICP) algorithm [20]—an algorithm
popular for 3-D registration of laser scans—for pose
refinement. For robustness, an outlier removal stage was
incorporated into the ICP.

The works mentioned so far have in common that the
3-D points are triangulated for every stereo pair, and the
relative motion is solved as a 3-D-to-3-D point registration
(alignment) problem. A completely different approach was
proposed in 2004 by Nister et al. [1]. Their paper is known
not only for coining the term VO but also for providing
the first real-time long-run implementation with a robust
outlier rejection scheme. Nister et al. improved the earlier
implementations in several areas. First, contrary to all
previous works, they did not track features among frames

but detected features (Harris corners) independently in all
frames and only allowed matches between features. This
has the benefit of avoiding feature drift during cross-corre-
lation-based tracking. Second, they did not compute the
relative motion as a 3-D-to-3-D point registration problem
but as a 3-D-to-two-dimensional (2-D) camera-pose estima-
tion problem (these methods are described in the “Motion
Estimation” section). Finally, they incorporated RANSAC
outlier rejection into the motion estimation step.

A different motion estimation scheme was introduced
by Comport et al. [21]. Instead of using 3-D-to-3-D point
registration or 3-D-to-2-D camera-pose estimation tech-
niques, they relied on the quadrifocal tensor, which
allows motion to be computed from 2-D-to-2-D image
matches without having to triangulate 3-D points in any of
the stereo pairs. The benefit of using directly raw 2-D points
in lieu of triangulated 3-D points lays in a more accurate
motion computation.

Monocular VO
The difference from the stereo scheme is that in the
monocular VO, both the relative motion and 3-D structure
must be computed from 2-D bearing data. Since the abso-
lute scale is unknown, the distance between the first two
camera poses is usually set to one. As a new image arrives,
the relative scale and camera pose with respect to the first
two frames are determined using either the knowledge of
3-D structure or the trifocal tensor [22].

Successful results with a single camera over long distan-
ces (up to several kilometers) have been obtained in the
last decade using both perspective and omnidirectional
cameras [23]–[29]. Related works can be divided into three
categories: feature-based methods, appearance-based meth-
ods, and hybrid methods. Feature-based methods are based
on salient and repeatable features that are tracked over the
frames; appearance-based methods use the intensity infor-
mation of all the pixels in the image or subregions of it; and
hybrid methods use a combination of the previous two.

In the first category are the works by the authors in [1],
[24], [25], [27], and [30]–[32]. The first real-time, large-
scale VO with a single camera was presented by Nister et
al. [1]. They used RANSAC for outlier rejection and 3-D-
to-2-D camera-pose estimation to compute the new
upcoming camera pose. The novelty of their paper is the
use of a five-point minimal solver [33] to calculate the
motion hypotheses in RANSAC. After that paper, five-
point RANSAC became very popular in VO and was used
in several other works [23], [25], [27]. Corke et al. [24]
provided an approach for monocular VO based on omni-
directional imagery from a catadioptric camera and optical
flow. Lhuillier [25] and Mouragnon et al. [30] presented an
approach based on local windowed-bundle adjustment to
recover both the motion and the 3-D map (this means that
bundle adjustment is performed over a window of the last
m frames). Again, they used the five-point RANSAC in
[33] to remove the outliers. Tardif et al. [27] presented an
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approach for VO on a car over a very long run (2.5 km)
without bundle adjustment. Contrary to the previous work,
they decoupled the rotation and translation estimation. The
rotation was estimated by using points at infinity and the
translation from the recovered 3-D map. Erroneous corre-
spondences were removed with five-point RANSAC.

Among the appearance-based or hybrid approaches are
the works by the authors in [26], [28], and [29]. Goecke et
al. [26] used the Fourier–Mellin transform for registering
perspective images of the ground plane taken from a car.
Milford and Wyeth [28] presented a method to extract
approximate rotational and translational velocity informa-
tion from a single perspective camera mounted on a car,
which was then used in a RatSLAM scheme [34]. They used
template tracking on the center of the scene. A major draw-
back with appearance-based approaches is that they are not
robust to occlusions. For this reason, Scaramuzza and Sieg-
wart [29] used image appearance to estimate the rotation
of the car and features from the ground plane to estimate
the translation and the absolute scale. The feature-based
approach was also used to detect failures of the appearance-
based method.

All the approaches mentioned earlier are designed for
unconstrained motion in 6 DoF. However, several VO
works have been specifically designed for vehicles with
motion constraints. The advantage is decreased computa-
tion time and improved motion accuracy. For instance,
Liang and Pears [35], Ke and Kanade [36], Wang et al.
[37], and Guerrero et al. [38] took advantage of homogra-
phies for estimating the egomotion on a dominant ground
plane. Scaramuzza et al. [31], [39] introduced a one-point
RANSAC outlier rejection based on the vehicle nonholo-
nomic constraints to speed up egomotion estimation to
400 Hz. In the follow-up work, they showed that nonholo-
nomic constraints allow the absolute scale to be recovered
from a single camera whenever the vehicle makes a turn
[40]. Following that work, vehicle nonholonomic con-
straints have also been used by Pretto et al. [32] for improv-
ing feature tracking and by Fraundorfer et al. [41] for
windowed bundle adjustment (see the following section).

Reducing the Drift
Since VO works by computing the camera path incre-
mentally (pose after pose), the errors introduced by each
new frame-to-frame motion accumulate over time. This
generates a drift of the estimated trajectory from the real
path. For some applications, it is of utmost importance
to keep drift as small as possible, which can be done
through local optimization over the last m camera poses.
This approach—called sliding window bundle adjust-
ment or windowed bundle adjustment—has been used in
several works, such as [41]–[44]. In particular, on a
10-km VO experiment, Konolige et al. [43] demonstrated
that windowed-bundle adjustment can decrease the final
position error by a factor of 2–5. Obviously, the VO drift
can also be reduced through combination with other

sensors, such as GPS and laser, or even with only an IMU
[43], [45], [46].

V-SLAM
Although this tutorial focuses on VO, it is worth mention-
ing the parallel line of research undertaken by visual simul-
taneous localization and mapping (V-SLAM). For an in-
depth study of the SLAM problem, the reader is referred to
two tutorials on this topic by Durrant-Whyte and Bailey
[47], [48]. Two methodologies have
become predominant in V-SLAM: 1)
filtering methods fuse the information
from all the images with a probability
distribution [49] and 2) nonfiltering
methods (also called keyframe meth-
ods) retain the optimization of global
bundle adjustment to selected key-
frames [50]. The main advantages of
either approach have been evaluated
and summarized in [51].

In the last few years, successful
results have been obtained using both
single and stereo cameras [49], [52]–
[62]. Most of these works have been limited to small,
indoor workspaces and only a few of them have recently
been designed for large-scale areas [54], [60], [62]. Some of
the early works in real-time V-SLAM were presented by
Chiuso et al. [52], Deans [53], and Davison [49] using a
full-covariance Kalman approach. The advantage of Davi-
son’s work was to account for repeatable localization after
an arbitrary amount of time. Later, Handa et al. [59]
improved on that work using an active matching technique
based on a probabilistic framework. Civera et al. [60] built
upon that work by proposing a combination of one-point
RANSAC within the Kalman filter that uses the available
prior probabilistic information from the filter in the RAN-
SAC model-hypothesis stage. Finally, Strasdat et al. [61]
presented a new framework for large-scale V-SLAM that
takes advantage of the keyframe optimization approach [50]
while taking into account the special character of SLAM.

VO Versus V-SLAM
In this section, the relationship of VO with V-SLAM is
analyzed. The goal of SLAM in general (and V-SLAM in
particular) is to obtain a global, consistent estimate of the
robot path. This implies keeping a track of a map of the
environment (even in the case where the map is not
needed per se) because it is needed to realize when the
robot returns to a previously visited area. (This is called
loop closure. When a loop closure is detected, this informa-
tion is used to reduce the drift in both the map and camera
path. Understanding when a loop closure occurs and effi-
ciently integrating this new constraint into the current
map are two of the main issues in SLAM.) Conversely, VO
aims at recovering the path incrementally, pose after pose,
and potentially optimizing only over the last n poses of the
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path (this is also called windowed bundle adjustment). This
sliding window optimization can be considered equivalent
to building a local map in SLAM; however, the philosophy
is different: in VO, we only care about local consistency of
the trajectory and the local map is used to obtain a more
accurate estimate of the local trajectory (for example, in
bundle adjustment), whereas SLAM is concerned with the
global map consistency.

VO can be used as a building block for a complete SLAM
algorithm to recover the incremental
motion of the camera; however, to
make a complete SLAM method, one
must also add some way to detect loop
closing and possibly a global optimiza-
tion step to obtain a metrically consist-
ent map (without this step, the map is
still topologically consistent).

If the user is only interested in the
camera path and not in the environ-
ment map, there is still the possibility
of using a complete V-SLAM method
instead of one of the VO techniques

described in this tutorial. A V-SLAM method is potentially
much more precise, because it enforces many more con-
straints on the path, but not necessarily more robust (e.g.,
outliers in loop closing can severely affect the map consis-
tency). In addition, it is more complex and computation-
ally expensive.

In the end, the choice between VO and V-SLAM
depends on the tradeoff between performance and con-
sistency, and simplicity in implementation. Although the
global consistency of the camera path is sometimes desir-
able, VO trades off consistency for real-time perform-
ance, without the need to keep track of all the previous
history of the camera.

Formulation of the VO Problem
An agent is moving through an environment and taking
images with a rigidly attached camera system at discrete
time instants k. In case of a monocular system, the set of
images taken at times k is denoted by I0:n ¼ fI0, . . . , Ing.
In case of a stereo system, there are a left and a right image
at every time instant, denoted by Il, 0:n ¼ fIl, 0, . . . , Il, ng
and Ir, 0:n ¼ fIr, 0, . . . , Ir, ng. Figure 1 shows an illustration
of this setting.

For simplicity, the camera coordinate frame is assumed
to be also the agent’s coordinate frame. In case of a stereo
system, without loss of generality, the coordinate system of
the left camera can be used as the origin.

Two camera positions at adjacent time instants k� 1
and k are related by the rigid body transformation
Tk, k�1 2 R4 3 4 of the following form:

Tk, k�1 ¼
Rk, k�1 tk, k�1

0 1

� �
, (1)

where Rk, k�1 2 SO(3) is the rotation matrix, and
tk, k�1 2 R3 3 1 the translation vector. The set T1:n ¼
fT1, 0, . . . , Tn, n�1g contains all subsequent motions. To
simplify the notation, from now on, Tk will be used
instead of Tk, k�1. Finally, the set of camera poses C0:n ¼
fC0, . . . , Cng contains the transformations of the camera
with respect to the initial coordinate frame at k ¼ 0. The
current pose Cn can be computed by concatenating all the
transformations Tk (k ¼ 1 . . . n), and, therefore, Cn ¼
Cn�1Tn, with C0 being the camera pose at the instant
k ¼ 0, which can be set arbitrarily by the user.

The main task in VO is to compute the relative transfor-
mations Tk from the images Ik and Ik�1 and then to concate-
nate the transformations to recover the full trajectory C0:n of
the camera. This means that VO recovers the path incremen-
tally, pose after pose. An iterative refinement over the last m
poses can be performed after this step to obtain a more accu-
rate estimate of the local trajectory. This iterative refinement
works by minimizing the sum of the squared reprojection
errors of the reconstructed 3-D points (i.e., the 3-D map) over
the last m images (this is called windowed-bundle adjustment,
because it is performed on a window of m frames. Bundle
adjustment will be described in Part II of this tutorial). The
3-D points are obtained by triangulation of the image points
(see the “Triangulation and Keyframe Selection” section).

As mentioned in the “Monocular VO” section, there are
two main approaches to compute the relative motion Tk:
appearance-based (or global) methods, which use the
intensity information of all the pixels in the two input
images, and feature-based methods, which only use salient
and repeatable features extracted (or tracked) across the
images. Global methods are less accurate than feature-
based methods and are computationally more expensive.
(As observed in the “History of VO” section, most appear-
ance-based methods have been applied to monocular VO.
This is due to ease of implementation compared with the

Ck+1

Ck–1Tk,k–1

Tk+1,k
Ck 

Figure 1. An illustration of the visual odometry problem. The
relative poses Tk;k�1 of adjacent camera positions (or positions
of a camera system) are computed from visual features and
concatenated to get the absolute poses Ck with respect to the
initial coordinate frame at k ¼ 0.
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stereo camera case.) Feature-based methods require the
ability to robustly match (or track) features across frames
but are faster and more accurate than global methods.
Therefore, most VO implementations are feature based.

The VO pipeline is summarized in Figure 2. For every
new image Ik (or image pair in the case of a stereo camera),
the first two steps consist of detecting and matching 2-D
features with those from the previous frames. Two-dimen-
sional features that are the reprojection of the same 3-D
feature across different frames are called image correspond-
ences. (As will be explained in Part II of this tutorial, we
distinguish between feature matching and feature tracking.
The first one consists of detecting features independently
in all the images and then matching them based on some
similarity metrics; the second one consists of finding fea-
tures in one image and then tracking them in the next
images using a local search technique, such as correlation.)
The third step consists of computing the relative motion
Tk between the time instants k� 1 and k. Depending on
whether the correspondences are specified in three or two
dimensions, there are three distinct approaches to tackle
this problem (see the “Motion Estimation” section). The
camera pose Ck is then computed by concatenation of Tk

with the previous pose. Finally, an iterative refinement
(bundle adjustment) can be done over the last m frames to
obtain a more accurate estimate of the local trajectory.

Motion estimation is explained in this tutorial (see
“Motion Estimation” section). Feature detection and
matching and bundle adjustment will be described in Part
II. Also, notice that for an accurate motion computation,
feature correspondences should not contain outliers (i.e.,
wrong data associations). Ensuring accurate motion esti-
mation in the presence of outliers is the task of robust esti-
mation, which will be described in Part II of this tutorial.
Most VO implementations assume that the camera is cali-
brated. To this end, the next section reviews the standard
models and calibration procedures for perspective and
omnidirectional cameras.

Camera Modeling and Calibration
VO can be done using both perspective and omnidirec-
tional cameras. In this section, we review the main models.

Perspective Camera Model
The most used model for perspective camera assumes a pin-
hole projection system: the image is formed by the intersec-
tion of the light rays from the objects through the center of
the lens (projection center), with the focal plane [Figure
3(a)]. Let X ¼ ½x, y, z�> be a scene point in the camera refer-
ence frame and p ¼ ½u, v�> its projection on the image plane
measured in pixels. The mapping from the 3-D world to the
2-D image is given by the perspective projection equation:

k
u
v
1

2
4
3
5 ¼ KX ¼

au 0 u0

0 av v0

0 0 1

2
4

3
5 x

y
z

2
4
3
5, (2)

where k is the depth factor, au and av the focal lengths, and
u0, v0 the image coordinates of the projection center. These
parameters are called intrinsic parameters. When the field
of view of the camera is larger than 45�, the effects of the
radial distortion may become visible and can be modeled
using a second- (or higher)-order polynomial. The deriva-
tion of the complete model can be found in computer
vision textbooks, such as [22] and [63]. Let ~p ¼ ½~u, ~v, 1�> ¼
K�1½u, v, 1�> be the normalized image coordinates. Nor-
malized coordinates will be used throughout in the follow-
ing sections.

(u0, v0) u

pv
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x

y

C

C

z
y

X
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v

u

X

y

z
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x

(a) (b)

(c)

z

Figure 3. (a) Perspective projection, (b) catadioptric projection,
and (c) a spherical model for perspective and omnidirectional
cameras. Image points are represented as directions to the
viewed points normalized on the unit sphere.

Image Sequence

Feature Detection

Feature Matching (or Tracking)

Local Optimization (Bundle Adjustment)

Motion Estimation

2-D-to-2-D 3-D-to-3-D 3-D-to-2-D

Figure 2. A block diagram showing the main components of a
VO system.
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Omnidirectional Camera Model
Omnidirectional cameras are cameras with wide field of
view (even more than 180�) and can be built using fish-eye

lenses or by combining standard
cameras with mirrors [the latter are
called catadioptric cameras, Figure 3(b)].
Typical mirror shapes in catadioptric
cameras are quadratic surfaces of
revolution (e.g., paraboloid or hyper-
boloid), because they guarantee a sin-
gle projection center, which makes
it possible to use the motion estima-
tion theory presented in the “Motion

Estimation” section.
Currently, there are two accepted models for omnidir-

ectional cameras. The first one proposed by Geyer and
Daniilidis [64] is for general catadioptric cameras (para-
bolic or hyperbolic), while the second one proposed by
Scaramuzza et al. [65] is a unified model for both fish-eye
and catadioptric cameras. A survey of these two models
can be found in [66] and [67]. The projection equation of
the unified model is as follows:

k
u
v

a0 þ a1qþ � � � þ an�1qn�1

2
4

3
5 ¼

x
y
z

2
4
3
5, (3)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

and a0, a1, . . . , an are intrinsic
parameters that depend on the type of mirror or fish-eye
lens. As shown in [65], n ¼ 4 is a reasonable choice for a
large variety of mirrors and fish-eye lenses. Finally, this
model assumes that the image plane satisfies the ideal
property that the axes of symmetry of the camera and mir-
ror are aligned. Although this assumption holds for most
catadioptric and fish-eye cameras, misalignments can be
modeled by introducing a perspective projection between
the ideal and real-image plane [66].

Spherical Model
As mentioned earlier, it is desirable that the camera
possesses a single projection center (also called single effec-
tive viewpoint). In a catadioptric camera, this happens
when the rays reflected by the mirror intersect all in a sin-
gle point (namely C). The existence of this point allows us
to model any omnidirectional projection as a mapping
from the single viewpoint to a sphere. For convenience, a
unit sphere is usually adopted.

It is important to notice that the spherical model applies
not only to omnidirectional cameras but also to perspec-
tive cameras. If the camera is calibrated, any point in the
perspective or omnidirectional image can be mapped into
a vector on the unit sphere. As can be observed in Figure
3(c), these unit vectors represent the directions to the
viewed scene points. These vectors are called normalized
image points on the unit sphere.

Camera Calibration
The goal of calibration is to accurately measure the
intrinsic and extrinsic parameters of the camera system.
In a multicamera system (e.g., stereo and trinocular), the
extrinsic parameters describe the mutual position and
orientation between each camera pair. The most popular
method uses a planar checkerboard-like pattern. The
position of the squares on the board is known. To com-
pute the calibration parameters accurately, the user must
take several pictures of the board shown at different posi-
tions and orientations by ensuring that the field of view of
the camera is filled as much as possible. The intrinsic and
extrinsic parameters are then found through a least-square
minimization method. The input data are the 2-D positions
of the corners of the squares of the board and their corre-
sponding pixel coordinates in each image.

Many camera calibration toolboxes have been devised
for MATLAB and C. An up-to-date list can be found in
[68]. Among these, the most popular ones for MATLAB
are given in [69] and [70]–[72]—for perspective and omni-
directional cameras, respectively. A C implementation of
camera calibration for perspective cameras can be found in
OpenCV [73], the open-source computer vision library.

Motion Estimation
Motion estimation is the core computation step per-
formed for every image in a VO system. More precisely,
in the motion estimation step, the camera motion
between the current image and the previous image is
computed. By concatenation of all these single move-
ments, the full trajectory of the camera and the agent
(assuming that the camera is rigidly mounted) can be
recovered. This section explains how the transformation
Tk between two images Ik�1 and Ik can be computed from
two sets of corresponding features fk�1, fk at time instants
k� 1 and k, respectively. Depending on whether the fea-
ture correspondences are specified in two or three
dimensions, there are three different methods.
l 2-D-to-2-D: In this case, both fk�1 and fk are specified in

2-D image coordinates.
l 3-D-to-3-D: In this case, both fk�1 and fk are specified in

3-D. To do this, it is necessary to triangulate 3-D points
at each time instant; for instance, by using a stereo
camera system.

l 3-D-to-2-D: In this case, fk�1 are specified in 3-D and fk

are their corresponding 2-D reprojections on the image
Ik. In the monocular case, the 3-D structure needs to be
triangulated from two adjacent camera views (e.g., Ik�2

and Ik�1) and then matched to 2-D image features in a
third view (e.g., Ik). In the monocular scheme, matches
over at least three views are necessary.
Notice that features can be points or lines. In general, due

to the lack of lines in unstructured scenes, point features are
used in VO. An in-depth review of these three approaches for
both point and line features can be found in [74]. The formu-
lation given in this tutorial is for point features only.

•
In GPS-denied

environments, VO

becomes of utmost

importance.

•
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2-D to 2-D: Motion from Image
Feature Correspondences

Estimating the Essential Matrix
The geometric relations between two images Ik and Ik�1 of
a calibrated camera are described by the so-called essential
matrix E. E contains the camera motion parameters up to
an unknown scale factor for the translation in the follow-
ing form:

Ek ’ t̂kRk, (4)

where tk ¼ ½tx, ty, tz�> and

t̂k ¼
0 �tz ty

tz 0 �tx

�ty tx 0

2
4

3
5: (5)

The symbol ’ is used to denote that the equivalence is
valid up to a multiplicative scalar.

The essential matrix can be computed from 2-D-to-2-D
feature correspondences, and rotation and translation can
directly be extracted from E. The main property of 2-D-to-
2-D-based motion estimation is the epipolar constraint,
which determines the line on which the corresponding fea-
ture point ~p0 of ~p lies in the other image (Figure 4). This con-
straint can be formulated by ~p0>E~p ¼ 0, where ~p0 is a feature
location in one image (e.g., Ik) and ~p is the location of its
corresponding feature in another image (e.g., Ik�1). ~p and ~p0

are normalized image coordinates. For the sake of simplic-
ity, throughout the following sections, normalized coordi-
nates in the form ~p ¼ ½~u, ~v, 1�> will be used (see the
Perspective Camera Model” section). However, very similar
equations can also be derived for normalized coordinates on
the unit sphere (see the “Spherical Model” section).

The essential matrix can be computed from 2-D-to-2-
D feature correspondences using the epipolar constraint.
The minimal case solution involves five 2-D-to-2-D cor-
respondences [75] and an efficient implementation pro-
posed by Nister in [76]. Nister’s five-point algorithm has
become the standard for 2-D-to-2-D motion estimation
in the presence of outliers (the problem of robust estima-
tion will be tackled in Part II of this tutorial). A simple
and straightforward solution for n � 8 noncoplanar
points is the Longuet-Higgins’ eight-point algorithm [2],
which is summarized here. Each feature match gives a con-
straint of the following form:

~u~u0 ~u0~v ~u0 ~u~v0 ~v~v0 ~v0 ~u ~v 1½ �E ¼ 0, (6)

where E ¼ ½e1 e2 e3 e4 e5 e6 e7 e8 e9�>:
Stacking the constraints from eight points gives the lin-

ear equation system AE ¼ 0, and by solving the system,
the parameters of E can be computed. This homogeneous
equation system can easily be solved using singular value
decomposition (SVD) [2]. Having more than eight points
leads to an overdetermined system to solve in the least-

squares sense and provides a degree of robustness to noise.
The SVD of A has the form A ¼ USV>, and the least-
squares estimate of E with jjEjj ¼ 1 can be found as the
last column of V . However, this linear estimation of E does
not fulfill the inner constraints of an essential matrix,
which come from the multiplication of the rotation matrix
R and the skew-symmetric translation matrix t̂. These con-
straints are visible in the singular values of the essential
matrix. A valid essential matrix after SVD is E ¼ USV>

and has diag(S) ¼ fs, s, 0g, which means that the first and
second singular values are equal and the third one is zero.
To get a valid E that fulfills the constraints, the solution
needs to be projected onto the space of valid essential matri-
ces. The projected essential matrix is �E ¼ Udiagf1, 1, 0gV>.

Observe that the solution of the eight-point algorithm is
degenerate when the 3-D points are coplanar. Conversely,
the five-point algorithm works also for coplanar points.
Finally, observe that the eight-point algorithm works for
both calibrated (perspective or omnidirectional) and unca-
librated (only perspective) cameras, whereas the five-point
algorithm assumes that the camera (perspective or omni-
directional) is calibrated.

Extracting R and t from E
From the estimate of �E, the rotation and translation parts
can be extracted. In general, there are four different solu-
tions for R, t for one essential matrix; however, by triangu-
lation of a single point, the correct R, t pair can be
identified. The four solutions are

R ¼ U(�W>)V>,

t̂ ¼ U(�W)SU>,

where

W> ¼
0 �1 0
�1 0 0
0 0 1

2
4

3
5: (7)

An efficient decomposition of E into R and t is described
in [76].

p̃

X

Epipolar Plane
p̃′

Ck–1

Ck 

Tk,k–1

Epipolar Line Epipolar Line

Figure 4. An illustration of the epipolar constraint.
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After selecting the correct solution by triangulation of a
point and choosing the solution where the point is in front
of both cameras, a nonlinear optimization of the rotation
and translation parameters should be performed using the
estimate R, t as initial values. The function to minimize is
the reprojection error defined in (10).

Computing the Relative Scale
To recover the trajectory of an image sequence, the differ-
ent transformations T0:n have to be concatenated. To do

this, the proper relative scales need to
be computed as the absolute scale of
the translation cannot be computed
from two images. However, it is possi-
ble to compute relative scales for the
subsequent transformations. One way
of doing this is to triangulate 3-D
points Xk�1 and Xk from two subse-
quent image pairs. From the corre-
sponding 3-D points, the relative

distances between any combination of two 3-D points can be
computed. The proper scale can then be determined from the
distance ratio r between a point pair in Xk�1 and a pair in Xk.

r ¼
jjXk�1, i � Xk�1, jjj
jjXk, i � Xk, jjj

: (8)

For robustness, the scale ratios for many point pairs are com-
puted and the mean (or in presence of outliers, the median) is
used. The translation vector t is then scaled with this distance
ratio. Observe that the relative-scale computation requires fea-
tures to be matched (or tracked) over multiple frames (at least
three). Instead of performing explicit triangulation of the 3-D
points, the scale can also be recovered by exploiting the trifocal
constraint between three-view matches of 2-D features [22].

The VO algorithm with the 2-D-to-2-D correspond-
ences is summarized in Algorithm 1.

3D-to-3D: Motion from 3-D Structure
Correspondences
For the case of corresponding 3-D-to-3-D features, the
camera motion Tk can be computed by determining the
aligning transformation of the two 3-D feature sets.

Corresponding 3-D-to-3-D features are available in the
stereo vision case.

The general solution consists of finding the Tk that min-
imizes the L2 distance between the two 3-D feature sets

arg min
Tk

X
i

jj~Xi
k � Tk ~Xi

k�1jj, (9)

where the superscript i denotes the i th feature, and ~Xk,
~Xk�1 are the homogeneous coordinates of the 3-D points,
i.e., ~X ¼ ½x, y, z, 1�>.

As shown in [77], the minimal case solution involves
three 3-D-to-3-D noncollinear correspondences, which
can be used for robust estimation in the presence of out-
liers (Part II of this tutorial). For the case of n � 3 corre-
spondences, one possible solution (according to Arun et al.
[78]) is to compute the translation part as the difference of
the centroids of the 3-D feature sets and the rotation part
using SVD. The translation is given by

tk ¼ Xk � RXk�1,

where �� stands for the arithmetic mean value.
The rotation can be efficiently computed using SVD as

Rk ¼ VU>,

where USV> ¼ svd((Xk�1 � Xk�1)(Xk � Xk)>) and Xk�1

and Xk are sets of corresponding 3-D points.
If the measurement uncertainties of the 3-D points are

known, they can be added as weights into the estimation as
described by Maimone et al. [17]. The computed transfor-
mations have absolute scale, and thus, the trajectory of a
sequence can be computed by directly concatenating the
transformations.

The VO algorithm with the 3-D-to-3-D correspond-
ences is summarized in Algorithm 2.

To compute the transformation, it is also possible to
avoid the triangulation of the 3-D points in the stereo camera
and use quadrifocal constraints instead. This method was
pointed out by Comport et al. [21]. The quadrifocal tensor
allows computing the transformation directly from 2-D-
to-2-D stereo correspondences.

•
Algorithm 1. VO from 2-D-to-2-D
correspondences.

1) Capture new frame Ik

2) Extract and match features between Ik�1 and Ik

3) Compute essential matrix for image pair Ik�1, Ik

4) Decompose essential matrix into Rk and tk , and form Tk

5) Compute relative scale and rescale tk accordingly

6) Concatenate transformation by computing Ck ¼ Ck�1Tk

7) Repeat from 1).

•
Algorithm 2. VO from 3-D-to-3-D
correspondences.

1) Capture two stereo image pairs Il;k�1, Ir;k�1 and Il;k , Ir;k

2) Extract and match features between Il;k�1 and Il;k

3) Triangulate matched features for each stereo pair

4) Compute Tk from 3-D features Xk�1 and Xk

5) Concatenate transformation by computing
Ck ¼ Ck�1Tk

6) Repeat from 1).

•
Bundle adjustment

can be used to refine

the local estimate of

the trajectory.

•
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3-D-to-2-D: Motion from 3-D Structure and
Image Feature Correspondences
As pointed out by Nister et al. [1], motion estimation from
3-D-to-2-D correspondences is more accurate than from
3-D-to-3-D correspondences because it minimizes the
image reprojection error (10) instead of the 3-D-to-3-D
feature position error (9). The transformation Tk is com-
puted from the 3-D-to-2-D correspondences Xk�1 and pk:
Xk�1 can be estimated from stereo data or, in the monocu-
lar case, from triangulation of the image measurements
pk�1 and pk�2. The latter, however, requires image corre-
spondences across three views.

The general formulation in this case is to find Tk that
minimizes the image reprojection error

arg min
Tk

X
i

k pi
k � p̂i

k�1k2, (10)

where p̂i
k�1 is the reprojection of the 3-D point Xi

k�1 into
image Ik according to the transformation Tk. This problem
is known as perspective from n points (PnP) (or resection),
and there are many different solutions to it in the literature
[79]. As shown in [18], the minimal case involves three 3-
D-to-2-D correspondences. This is called perspective from
three points (P3P) and returns four solutions that can be
disambiguated using one or more additional points. (A fast
implementation of P3P is described in [80], and C code
can be freely downloaded from the authors’ Web page.) In
the 3-D-to-2-D case, P3P is the standard method for robust
motion estimation in the presence of outliers [18]. Robust
estimation will be described in Part II of this tutorial.

A simple and straightforward solution to the PnP prob-
lem for n � 6 points is the direct linear transformation
algorithm [22]. One 3-D-to-2-D point correspondence
provides two constraints of the following form for the
entries of Pk ¼ ½Rjt�.

0 0 0 0 �x �y �z �1 x~v y~v z~v ~v
x y z 1 0 0 0 0 �x~u �y~u �z~u �~u

� � P1

P2

P3

2
4

3
5¼0,

(11)

where each Pj> is a four vector (the jth row of Pk) and x, y,
z are the coordinates of the 3-D points Xk�1.

Stacking the constraints of six-point correspondences
gives a linear system of equations of the form AP ¼ 0. The
entries of P can be computed from the nullvector of A, e.g.,
by using SVD. The rotation and translation parts can easily
be extracted from Pk ¼ ½Rjt�. The resulting rotation R is
not necessarily orthonormal. However, this is not a prob-
lem since both R and t can be refined by nonlinear optimi-
zation of the reprojection error as defined in (10).

The 3-D-to-2-D motion estimation assumes that the 2-
D image points only come from one camera. This means
that for the case of a stereo camera, the 2-D image points
are those of either the left or the right camera. Obviously, it
is desirable to make use of the image points of both

cameras at the same time. A generalized version of the 3-
D-to-2-D motion estimation algorithm for nonconcurrent
rays (i.e., 2-D image points from multiple cameras) was
proposed by Nister in [81] for extrinsically calibrated cam-
eras (i.e., the mutual position and orientation between the
cameras is known).

For the monocular case, it is necessary to triangulate 3-
D points and estimate the pose from 3-D-to-2-D matches
in an alternating fashion. This alternating scheme is often
referred to as SFM. Starting from two
views, the initial set of 3-D points and
the first transformation are computed
from 2-D-to-2-D feature matches.
Subsequent transformations are then
computed from 3-D-to-2-D feature
matches. To do this, features need to
be matched (or tracked) over multiple
frames (at least three). New 3-D fea-
tures are again triangulated when a
new transformation is computed and
added to the set of 3-D features. The main challenge of this
method is to maintain a consistent and accurate set of tri-
angulated 3-D features and to create 3-D-to-2-D feature
matches for at least three adjacent frames.

The VO algorithm with 3-D-to-2-D correspondences is
summarized in Algorithm 3.

Triangulation and Keyframe Selection
Some of the previous motion estimation methods require
triangulation of 3-D points (structure) from 2-D image
correspondences. Structure computation is also needed by
bundle adjustment (Part II of this tutorial) to compute a
more accurate estimate of the local trajectory.

Triangulated 3-D points are determined by intersecting
back-projected rays from 2-D image correspondences of at
least two image frames. In perfect conditions, these rays
would intersect in a single 3-D point. However, because of
image noise, camera model and calibration errors, and

•
Algorithm 3. VO from 3-D-to-2-D
Correspondences.

1) Do only once:

1.1) Capture two frames Ik�2, Ik�1

1.2) Extract and match features between them

1.3) Triangulate features from Ik�2, Ik�1

2) Do at each iteration:

2.1) Capture new frame Ik

2.2) Extract features and match with previous frame Ik�1

2.3) Compute camera pose (PnP) from 3-D-to-2-D matches

2.4) Triangulate all new feature matches between Ik and Ik�1

2.5) Iterate from 2.1).

•
2-D-to-2-D and

3-D-to-2-D methods

are more accurate

than 3-D-to-3-D

methods.

•
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feature matching uncertainty, they never intersect. There-
fore, the point at a minimal distance, in the least-squares

sense, from all intersecting rays can be
taken as an estimate of the 3-D point
position. Notice that the standard de-
viation of the distances of the triangu-
lated 3-D point from all rays gives an
idea of the quality of the 3-D point.
Three-dimensional points with large
uncertainty will be thrown out. This
happens especially when frames are
taken at very nearby intervals com-

pared with the distance to the scene points. When this
occurs, 3-D points exhibit very large uncertainty. One way
to avoid this consists of skipping frames until the average
uncertainty of the 3-D points decreases below a certain
threshold. The selected frames are called keyframes. Key-
frame selection is a very important step in VO and should
always be done before updating the motion.

Discussion
According to Nister et al. [1], there is an advantage in using
the 2-D-to-2-D and 3-D-to-2-D methods compared to the
3-D-to-3-D method for motion computation. Nister com-
pared the VO performance of the 3-D-to-3-D case to that
of the 3-D-to-2-D case for a stereo camera system and
found the latter being greatly superior to the former. The
reason is due to the triangulated 3-D points being much
more uncertain in the depth direction. When 3-D-to-3-D
feature correspondences are used in motion computation,
their uncertainty may have a devastating effect on the
motion estimate. In fact, in the 3-D-to-3-D case, the 3-D
position error, (9), is minimized whereas in the 3-D-to-2-
D case the image reprojection error, (10).

In the monocular scheme, the 2-D-to-2-D method is
preferable compared to the 3-D-to-2-D case since it
avoids point triangulation. However, in practice, the 3-D-
to-2-D method is used more often than the 2-D-to-2-D
method. The reason lies in its faster data association. As
will be described in Part II of this tutorial, for accurate
motion computation, it is of utmost importance that the
input data do not contain outliers. Outlier rejection is a
very delicate step, and the computation time of this oper-
ation is strictly linked to the minimum number of points
necessary to estimate the motion. As mentioned previ-
ously, the 2-D-to-2-D case requires a minimum of five-
point correspondences (see the five-point algorithm);
however, only three correspondences are necessary in the
3-D-to-2-D motion case (see P3P). As will be shown in
Part II of this tutorial, this lower number of points results
in a much faster motion estimation.

An advantage of the stereo camera scheme compared to
the monocular one, besides the property that 3-D features
are computed directly in the absolute scale, is that matches
need to be computed only between two views instead of
three views as in the monocular scheme. Additionally, since

the 3-D structure is computed directly from a single stereo
pair rather than from adjacent frames as in the monocular
case, the stereo scheme exhibits less drift than the monocu-
lar one in case of small motions. Monocular methods are
interesting because stereo VO degenerates into the monocu-
lar case when the distance to the scene is much larger than
the stereo baseline (i.e., the distance between the two cam-
eras). In this case, stereo vision becomes ineffective and
monocular methods must be used.

Regardless of the chosen motion computation
method, local bundle adjustment (over the last m frames)
should always be performed to compute a more accu-
rate estimate of the trajectory. After bundle adjustment,
the effects of the motion estimation method are much
more alleviated.

Conclusions
This tutorial has described the history of VO, the problem
formulation, and the distinct approaches to motion com-
putation. VO is a well-understood and established part of
robotics. Part II of this tutorial will summarize the
remaining building blocks of the VO pipeline: how to
detect and match salient and repeatable features across
frames, robust estimation in the presence of outliers, and
bundle adjustment. In addition, error propagation, appli-
cations, and links to free-to-download code will be
included.
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I. Introduction

T
o efficiently solve many tasks envisioned to be 
carried out by mobile robots including transpor-
tation, search and rescue, or automated vacuum 
cleaning robots need a map of the environment. 

The availability of an accurate map allows for the 
design of systems that can operate in complex envi-
ronments only based on their on-board sensors and 
without relying on external reference system like, e.g., 
GPS. The acquisition of maps of indoor environments, 
where typically no GPS is available, has been a major 
research focus in the robotics community over the last 
decades. Learning maps under pose uncertainty is of-
ten referred to as the simultaneous localization and 
mapping (SLAM) problem. In the literature, a large 
variety of solutions to this problem is available. These 
approaches can be classified either as filtering or 
smoothing. Filtering approaches model the problem 
as an on-line state estimation where the state of the 

 Digital Object Identifier 10.1109/MITS.2010.939925

Abstract—Being able to build a map of the envi-
ronment and to simultaneously localize within 
this map is an essential skill for mobile robots 
navigating in unknown environments in ab-
sence of external referencing systems such as 
GPS. This so-called simultaneous localization 
and mapping (SLAM) problem has been one 
of the most popular research topics in mobile 
robotics for the last two decades and efficient 
approaches for solving this task have been pro-
posed. One intuitive way of formulating SLAM 
is to use a graph whose nodes correspond to the 
poses of the robot at different points in time and 
whose edges represent constraints between the 
poses. The latter are obtained from observations 
of the environment or from movement actions 
carried out by the robot. Once such a graph is 
constructed, the map can be computed by find-
ing the spatial configuration of the nodes that is 
mostly consistent with the measurements mod-
eled by the edges. In this paper, we provide an in-
troductory description to the graph-based SLAM 
problem. Furthermore, we discuss a state-of-
the-art solution that is based on least-squares 
error minimization and exploits the structure 
of the SLAM problems during optimization. The 
goal of this tutorial is to enable the reader to 
implement the proposed methods from scratch. 
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(c)(b)(a)

FIG 1 Applications of SLAM technology. (a) An autonomous instrumented car developed at Stanford. This car can acquire maps by utilizing only its 
on-board sensors. These maps can be subsequently used for autonomous navigation. (b) The museum guide robot TPR-Robina developed by Toyota 
(picture courtesy of Toyota Motor Company). This robot acquires a new map every time the museum is reconfigured. (c) The KUKA Concept robot 
“Omnirob”, a mobile manipulator designed autonomously navigate and operate in the environment with the sole use of its on-board sensors (picture 
courtesy of KUKA Roboter GmbH). 

system consists in the current robot position and the map. 
The estimate is augmented and refined by incorporating 
the new measurements as they become available. Popular 
techniques like Kalman and information filters [28], [3], 
particle filters [22], [12], [9], or information filters [7], [31] 
fall into this category. To highlight their incremental na-
ture, the filtering approaches are usually referred to as 
on-line SLAM methods. Conversely, smoothing approaches 
estimate the full trajectory of the robot from the full set 
of measurements [21], [5], [27]. These approaches address 
the so-called full SLAM problem, and they typically rely on 
least-square error minimization techniques. 

Figure 1 shows three examples of real robotic systems 
that use SLAM technology: an autonomous car, a tour-guide 
robot, and an industrial mobile manipulation robot. Image 
(a) shows the autonomous car Junior as well as a model of a 
parking garage that has been mapped with that car. Thanks 
to the acquired model, the car is able to park itself autono-
mously at user selected locations in the garage. Image (b) 
shows the TPR-Robina robot developed by Toyota which is 
also used in the context of guided tours in museums. This 
robot uses SLAM technology to update its map whenever the 
environment has been changed. Robot manufacturers such 
as KUKA, recently presented mobile manipulators as shown 
in Image (c). Here, SLAM technology is needed to  operate 

such devices in flexible way in 
changing industrial environments. 
Figure 2 illustrates 2D and 3D maps 
that can be estimated by the SLAM 
algorithm discussed in this paper. 

An intuitive way to address the 
SLAM problem is via its so-called 
graph-based formulation. Solving 
a graph-based SLAM problem in-
volves to construct a graph whose 

nodes represent robot poses or landmarks and in which an 
edge between two nodes encodes a sensor measurement 
that constrains the connected poses. Obviously, such con-
straints can be contradictory since observations are al-
ways affected by noise. Once such a graph is constructed, 
the crucial problem is to find a configuration of the nodes 
that is maximally consistent with the measurements. This 
 involves solving a large error minimization problem. 

The graph-based formulation of the SLAM problem has 
been proposed by Lu and Milios in 1997 [21]. However, it 
took several years to make this formulation popular due 
to the comparably high complexity of solving the error 
minimization problem using standard techniques. Recent 
insights into the structure of the SLAM problem and ad-
vancements in the fields of sparse linear algebra resulted 
in efficient approaches to the optimization problem at hand. 
Consequently, graph-based SLAM methods have undergone 
a renaissance and currently belong to the state-of-the-art 
techniques with respect to speed and accuracy. The aim of 
this tutorial is to introduce the SLAM problem in its proba-
bilistic form and to guide the reader to the synthesis of an 
effective and  state-of-the-art graph-based SLAM method. 
To understand this tutorial a good knowledge of linear al-
gebra, multivariate minimization, and probability theory 
are required. 

Graph-based SLAM methods have undergone a renaissance 
and currently belong to the state-of-the-art techniques with 
respect to speed and accuracy.
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II. Probabilistic Formulation of SLAM
Solving the SLAM problem consists of estimating the ro-
bot trajectory and the map of the environment as the robot 
moves in it. Due to the inherent noise in the sensor mea-
surements, a SLAM problem is usually described by means 
of probabilistic tools. The robot is assumed to move in an 
unknown environment, along a trajectory described by the 
sequence of random variables x1:T5 5x1, c, xT6. While 
moving, it acquires a sequence of odometry measurements 
u1:T5 5u1, c, uT6 and perceptions of the environment 
z1:T5 5z1, c, zT6. Solving the full SLAM problem consists 
of estimating the posterior probability of the robot’s trajec-
tory x1:T and the map m of the environment given all the 
measurements plus an initial position x0: 

 p 1x1:T, m 0  z1:T, u1:T, x0 2 . (1)

The initial position x0 defines the posi-
tion of the map and can be chosen ar-
bitrarily. For convenience of notation, 
in the remainder of this document we 
will omit x0. The poses x1:T and the 
odometry u1:T are usually represented 
as 2D or 3D transformations in SE 12 2
or in SE 13 2 , while the map can be rep-
resented in different ways. Maps can 
be parametrized as a set of spatially 
located landmarks, by dense represen-
tations like occupancy grids, surface 
maps, or by raw sensor measurements. 
The choice of a particular map repre-
sentation depends on the sensors used, 
on the characteristics of the environ-

ment, and on the estimation algorithm. Landmark maps [28], 
[22] are often preferred in environments where locally dis-
tinguishable features can be identified and especially when 
cameras are used. In contrast, dense representations [33], 
[12], [9] are usually used in conjunction with range sensors. 
Independently of the type of the representation, the map is 
defined by the measurements and the locations where these 
measurements have been acquired [17], [18]. Figure 2 illus-
trates three typical dense map representations for 3D and 
2D: multilevel surface maps, point clouds and occupancy 
grids. Figure 3 shows a typical 2D landmark based map. 

Estimating the posterior given in (1) involves operat-
ing in high dimensional state spaces. This would not be 
tractable if the SLAM problem would not have a well de-
fined structure. This structure arises from certain and 
commonly done assumptions, namely the static world 

(c)(b)(a)

FIG 2 (a) A 3D map of the Stanford parking garage acquired with an instrumented car (bottom), and the corresponding satellite view (top). This map has 
been subsequently used to realize an autonomous parking behavior. (b) Point cloud map acquired at the university of Freiburg (courtesy of Kai. M. 
Wurm) and relative satellite image. (c) Occupancy grid map acquired at the hospital of Freiburg. Top: a bird’s eye view of the area, bottom: the occupancy 
grid representation. The gray areas represent unobserved regions, the white part represents traversable space while the black points indicate 
occupied regions. 
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FIG 3 Landmark based maps acquired at the German Aerospace Center. In this setup the landmarks 
consist in white circles painted on the ground that are detected by the robot through vision, as 
shown in the left image. The right image illustrates the trajectory of the robot and the estimated 
positions of the landmarks. These images are courtesy of Udo Frese and Christoph Hertzberg.
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 assumption and the Markov assumption. A convenient 
way to describe this structure is via the dynamic Bayesian 
network (DBN) depicted in Figure 4. A Bayesian network 
is a graphical model that describes a stochastic process as 
a directed graph. The graph has one node for each random 
variable in the process, and a directed edge (or arrow) 
between two nodes models a conditional dependence be-
tween them. 

In Figure 4, one can distinguish blue/gray nodes indi-
cating the observed variables (here z1:T and u1:T) and white 
nodes which are the hidden variables. The hidden variables 
x1:T and m model the robot’s trajectory and the map of the en-
vironment. The connectivity of the DBN follows a recurrent 
pattern characterized by the state transition model and by 
the observation model. The transition model p 1xt | xt21, ut 2  
is represented by the two edges leading to xt and represents 
the probability that the robot at time t  is in xt given that at 

time t2 1 it was in xt and it acquired an odometry measure-
ment ut. 

The observation model p 1zt | xt, mt 2  models the probabil-
ity of performing the observation zt given that the robot is 
at location xt in the map. It is represented by the arrows en-
tering in zt. The exteroceptive observation zt depends only 
on the current location xt of the robot and on the (static) 
map m. Expressing SLAM as a DBN highlights its tempo-
ral structure, and therefore this formalism is well suited to 
describe filtering processes that can be used to tackle the 
SLAM problem. 

An alternative representation to the DBN is via the so-
called “graph-based” or “network-based” formulation of 
the SLAM problem, that highlights the underlying  spatial 
 structure. In graph-based SLAM, the poses of the robot are 
modeled by nodes in a graph and labeled with their position 
in the environment [21], [18]. Spatial constraints between 
poses that result from observations zt or from odometry 
measurements ut are encoded in the edges between the 
nodes. More in detail, a graph-based SLAM algorithm 
constructs a graph out of the raw sensor measurements. 
Each node in the graph represents a robot position and a 
measurement acquired at that position. An edge between 
two nodes represents a spatial constraint relating the two 
robot poses. A constraint consists in a probability distri-
bution over the relative transformations between the two 
poses. These transformations are either odometry mea-
surements between sequential robot positions or are de-
termined by aligning the observations acquired at the two 
robot locations. Once the graph is constructed one seeks to 
find the configuration of the robot poses that best satisfies 
the constraints. Thus, in graph-based SLAM the problem 
is decoupled in two tasks: constructing the graph from the 
raw measurements (graph construction), determining the 

most likely configuration of the poses 
given the edges of the graph (graph 
optimization). The graph construc-
tion is usually called front-end and 
it is heavily sensor dependent, while 
the second part is called back-end and 
relies on an abstract representation 
of the data which is sensor agnostic. 
A short example of a front-end for 2D 
laser SLAM is described in Section A. 
In this tutorial we will describe an 
easy-to-implement but efficient back-
end for graph-based SLAM. Figure 5 
depicts an uncorrected pose-graph 
and the corresponding corrected one. 

III. Related Work
There is a large variety of SLAM ap-
proaches available in the robotics com-
munity. Throughout this tutorial we 

x0 x1 xt−1 xt xT

u1 ut−1 ut uT

z1 zt−1 zt zT

m

FIG 4 Dynamic Bayesian Network of the SLAM process.

(a) (b)

FIG 5 Pose-graph corresponding to a data-set recorded at MIT Killian Court (courtesy of Mike Bosse 
and John Leonard) (left) and after (right) optimization. The maps are obtained by rendering the laser 
scans according to the robot positions in the graph.
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focus on graph-based approaches and therefore will con-
sider such approaches in the discussion of related work. 
Lu and Milios [21] were the first to refine a map by glob-
ally optimizing the system of equations to reduce the er-
ror introduced by constraints. Gutmann and Konolige [11] 
proposed an effective way for constructing such a network 
and for detecting loop closures while running an incremen-
tal estimation algorithm. Since then, many approaches for 
minimizing the error in the constraint network have been 
proposed. For example, Howard et al. [15] apply relaxation 
to localize the robot and build a map. Frese et al. [8] propose 
a variant of Gauss-Seidel relaxation called multi-level relax-
ation (MLR). It applies relaxation at different resolutions. 
Dellaert and Kaess [5] were the first to exploit sparse ma-
trix factorizations to solve the linearized problem in off-line 
SLAM. Subsequently Kaess et al. [16] presented iSAM, an on-
line version that exploits partial reorderings to compute the 
sparse factorization. 

Recently, Konolige et al. [19] proposed an open-source 
implementation of a pose-graph method that constructs the 
linearized system in an efficient way. Olson et al. [27] pre-
sented an efficient optimization approach which is based 
on the stochastic gradient descent and can efficiently cor-
rect even large pose-graphs. Grisetti et al. proposed an 
extension of Olson’s approach that uses a tree parametri-
zation of the nodes in 2D and 3D. In this way, they increase 
the convergence speed [10]. 

GraphSLAM [32] applies variable elimination techniques 
to reduce the dimensionality of the optimization problem. 
The ATLAS framework [2] constructs a two-level hierarchy of 
graphs and employs a Kalman filter to construct the  bottom 
level. Then, a global optimization approach aligns the local 
maps at the second level. Similar to ATLAS, Estrada et al. 
proposed Hierarchical SLAM [6] as a technique for using 
 independent local maps. 

Most optimization techniques focus on computing the best 
map given the constraints and are called SLAM back-ends. In 
contrast to that, SLAM front-ends seek to interpret the sensor 
data to obtain the constraints that are the basis for the op-
timization approaches. Olson [25], for example, presented a 
front-end with outlier rejection based on spectral clustering. 
For making data associations in the SLAM front-ends statisti-
cal tests such as the x2 test or joint compatibility test [23] are 
often applied. The work of Nüchter et al. [24] aims at building 
an integrated SLAM system for 3D mapping. The main focus 
lies on the SLAM front-end for finding constraints. For opti-
mization, a variant of the approach of Lu and Milios [21] for 
3D settings is applied. The methods proposed in this paper 
can be effectively applied to all these front-ends. 

IV. Graph-Based SLAM
A graph-based SLAM approach constructs a simplified es-
timation problem by abstracting the raw sensor measure-
ments. These raw measurements are replaced by the edges 

in the graph which can then be seen as “virtual measure-
ments”. More in detail an edge between two nodes is labeled 
with a probability distribution over the relative locations of 
the two poses, conditioned to their mutual measurements. 
In general, the observation model p 1zt | xt, mt 2  is multi-
modal and therefore the Gaussian assumption does not 
hold. This means that a single observation zt might result 
in multiple potential edges connecting different poses in 
the graph and the graph connectivity needs itself to be de-
scribed as a probability distribution. Directly dealing with 
this multi-modality in the estimation process would lead 
to a combinatorial explosion of the complexity. As a result 
of that, most practical approaches restrict the estimate to 
the most likely topology. Thus, one needs to determine the 
most likely constraint resulting from an observation. This 
decision depends on the probability distribution over the 
robot poses. This problem is known as data association and 
is usually addressed by the SLAM front-end. To compute 
the correct data-association, a front-end usually requires a 
consistent estimate of the conditional prior over the robot 
trajectory p 1x1:T | z1:T, u1:T 2 . This requires to interleave the 
execution of the front-end and of the back-end while the 
robot explores the environment. Therefore, the accuracy 
and the efficiency of the back-end is crucial to the design of 
a good SLAM system. In this tutorial, we will not describe 
sophisticated approaches to the data association problem. 
Such methods tackle association by means of spectral clus-
tering [27], joint compatibility branch and bound [23], or 
backtracking [13]. We rather assume that the given front-
end provides consistent estimates. 

If the observations are affected by (locally) Gaussian noise 
and the data association is known, the goal of a graph-based 
mapping algorithm is to compute a Gaussian  approximation 

x1

x2

eij, Ωij

x3

xT

xj xi

xt
xt–1

FIG 6 A pose-graph representation of a SLAM process. Every node in the 
graph corresponds to a robot pose. Nearby poses are connected by 
edges that model spatial constraints between robot poses arising from 
measurements. Edges et21 t between consecutive poses model odometry 
measurements, while the other edges represent spatial constraints arising 
from multiple observations of the same part of the environment.
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of the posterior over the robot trajectory. This involves 
computing the mean of this Gaussian as the configuration 
of the nodes that maximizes the likelihood of the observa-
tions. Once this mean is known the information matrix of 
the Gaussian can be obtained in a straightforward fashion, as 
explained in Section IV-B. In the following we will character-
ize the task of finding this maximum as a constraint optimi-
zation problem. We will also introduce parts of the notation 
illustrated in Figure 6. 

Let x5 1x1, c , xT 2T be a vector of parameters, where 
xi describes the pose of node i. Let zij and Vij be respectively 
the mean and the information matrix of a virtual measure-
ment between the node i and the node j. This virtual mea-
surement is a transformation that makes the observations 
acquired from i maximally overlap with the observation 
acquired from j. Let ẑij 1xi, xj 2  be the prediction of a virtual 
measurement given a configuration of the nodes xi and xj. 
Usually this prediction is the relative transformation be-
tween the two nodes. The log-likelihood lij of a measurement 
zij is therefore 

 lij ~ 3zij2 ẑij 1xi, xj 2 4TVij 3zij2 ẑij 1xi, xj 2 4. (2)

Let e 1xi, xj, zij 2  be a function that computes a difference be-
tween the expected observation ẑij and the real observation 
zij gathered by the robot. For simplicity of notation, we will 
encode the indices of the measurement in the indices of the 
error function 

 eij 1xi, xj 2 5 zij2 ẑij 1xi, xj 2 . (3)

Figure 7 illustrates the functions and the quantities that play 
a role in defining an edge of the graph. Let C be the set of 
pairs of indices for which a constraint (observation) z exists. 

The goal of a maximum likelihood approach is to find the 
configuration of the nodes x* that minimizes the negative log 
likelihood F 1x 2  of all the observations 

 F 1x 2 5  a8i, j 9[Ceij
TVijeij  (4)

thus, it seeks to solve the following equation: 

 x*5 argmin
x  

F 1x 2 . (5)

In the remainder of this section we will describe an ap-
proach to solve Eq. 5 and to compute a Gaussian approxima-
tion of the posterior over the robot trajectory. Whereas the 
proposed approach utilizes standard optimization meth-
ods, like the Gauss-Newton or the Levenberg- Marquardt 
algorithms, it is particularly efficient because it effectively 
exploits the structure of the problem. 

We first describe a direct implementation of tradi-
tional nonlinear least-squares optimization. Subsequently, 
we  introduce a workaround that allows to deal with the 
 singularities in the representation of the robot poses in an 
elegant manner. 

A. Error Minimization via Iterative Local Linearizations
If a good initial guess x̆ of the robot’s poses is known, the 
numerical solution of Eq. (5) can be obtained by using the 
popular Gauss-Newton or Levenberg-Marquardt algo-
rithms. The idea is to approximate the error function by 
its first order Taylor expansion around the current initial 
guess x̆

 eij 1 x̆i1 Dxi, x̆j1 Dxj 2 5 eij 1 x̆1 Dx 2  (6)

 . eij1 JijDx. (7)

Here, Jij is the Jacobian of eij 1x 2  computed in x̆ and eij def
5

. 
eij 1 x̆ 2 . Substituting Eq. (7) in the error terms Fij of Eq. (4), 
we obtain: 

 Fij 1 x̆1 Dx 2
 5 eij 1 x̆1 Dx 2TVij eij 1 x̆1 Dx 2  (8)

 . 1eij1 Jij Dx 2TVij 1eij1 Jij Dx 2  (9)

 5 eij
T Vij 

eij1 2eij
T Vij 

Jij Dx1 DxTJij
T Vij 

Jij Dx (10)

 5 cij1 2bij Dx1 DxT Hij Dx (11)

With this local approximation, we can rewrite the 
 function F 1x 2  in Eq. (4) as 

 F 1 x̆1 Dx 2 5 a8i, j 9[CFij 1 x̆1 Dx 2  (12)

e

Fij

bij

ee

cij 

e

Hij

xi

xj

zij

ẑij

Ωij

eij (xi, xj)

FIG 7 Aspects of an edge connecting the vertex xi and the vertex xj. This 
edge originates from the measurement zij. From the relative position of the 
two nodes, it is possible to compute the expected measurement ẑij that 
represents xj seen in the frame of xi. The error eij 1xi, xj 2  depends on the 
displacement between the expected and the real measurement. An edge is 
fully characterized by its error function eij 1xi, xj 2  and by the information 
matrix Vij of the measurement that accounts for its uncertainty.
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 .  a8i, j 9[Ccij1 2bijDx1 DxTHijDx (13)

 5 c1 2bTDx1 DxTHDx. (14)

The quadratic form in Eq. (14) is obtained from Eq. (13) 
by setting c5 a cij, b5 abij, and H5 aHij. It can be 
minimized in Dx by solving the linear system 

 H Dx*5 2 b. (15)

The matrix H is the information matrix of the system, 
since it is obtained by projecting the measurement er-
ror in the space of the trajectories via the Jacobians. It is 
sparse by construction, having non-zeros between poses 
connected by a constraint. Its number of non-zero blocks 
is twice the number of constrains plus the number of 
nodes. This allows to solve Eq. (15) by sparse Cholesky 
factorization. An efficient yet compact implementation of 
sparse Cholesky factorization can be found in the library 
CSparse [4]. 

The linearized solution is then obtained by adding to 
the initial guess the computed increments 

 x*5 x̆1 Dx*. (16)

The popular Gauss-Newton algorithm iterates the linear-
ization in Eq. (14), the solution in Eq. (15), and the update 
step in Eq. (16). In every iteration, the previous solution is 
used as the linearization point and the initial guess. 

The procedure described above is a general approach 
to multivariate function minimization, here derived for the 
special case of the SLAM problem. The general approach, 
however, assumes that the space of parameters x is Euclid-
ean, which is not valid for SLAM and may lead to sub-optimal 
solutions. 

B. Considerations about the 
Structure of the Linearized System
According to Eq. (14), the matrix H and the vector b are 
obtained by summing up a set of matrices and vectors, 
one for every constraint. Every constraint will contribute 
to the system with an addend term. The structure of this 
addend depends on the Jacobian of the error function. 
Since the error function of a constraint depends only on 
the values of two nodes, the Jacobian in Eq. (7) has the 
following form: 

 Jij5 £0 c 0    Aij     0 c 0     Bij      0 c 0≥ . (17)

Here Aij and Bij are the derivatives of the error function 
with respect to xi and xj. From Eq. (10) we obtain the fol-
lowing structure for the block matrix Hij: 

 Hij5 • f
Aij

TVijAij
c Aij

TVijBij

( f (
Bij

TVijAij
c Bij

TVijBij

f

μ  (18)

 bij5 • (
Aij

TVijeij

(
Bij

TVijeij

(

μ  (19)

For simplicity of notation we omitted the zero blocks. 
Algorithm 1 summarizes an iterative Gauss-Newton pro-

cedure to determine both the mean and the information ma-
trix of the posterior over the robot poses. Since most of the 
structures in the system are sparse, we recommend to use 
memory efficient representations to store the Hessian H of 
the system. Since the structure of the Hessian is known in 
advance from the connectivity of the graph, we recommend 
to pre-allocate the Hessian once at the beginning of the it-
erations and to update it in place by looping over all edges 
whenever a new linearization is required. Each edge con-
tributes to the blocks H3ii4, H3ij4, H3ji4, and H3jj4 and to the blocks 
b3i4 and b3j4 of the coefficient vector. An additional optimiza-
tion is to compute only the upper triangular part of H, since 
it is symmetric. Note that the error of a constraint eij depends 
only on the relative position of the connected poses xi and xj. 
Accordingly, the error F 1x 2of a particular configuration of 
the poses x is invariant under a rigid transformation of all 
the poses. This results in Eq. 15 being under determined. To 
numerically solve this system it is therefore common prac-
tice to constrain one of the increments Dxk to be zero. This 
can be done by adding the identity matrix to the kth diagonal 
block H 3kk 4. Without loss of generality in Algorithm 1 we fix 
the first node x1. An alternative way to fix a particular node 
of the pose-graph consists in suppressing the kth block row 
and the kth block column of the linear system in Eq. 15. 

C. Least Squares on a Manifold
A common approach in numeric to deal with non-Euclidean 
spaces is to perform the optimization on a manifold. A mani-
fold is a mathematical space that is not necessarily Euclid-
ean on a global scale, but can be seen as Euclidean on a local 
scale [20]. Note that the manifold-based approach described 
here is similar to the way of minimizing functions in SO 13 2  
as described by Taylor and Kriegman [30]. 

In the context of the SLAM problem, each parameter 
block xi consists of a translation vector ti and a rotational 
component ai. The translation ti clearly forms a Euclidean 
space, while the rotational components ai span over the 
non-Euclidean 2D or 3D rotation group SO 12 2  or SO 13 2 . To 
avoid singularities, these spaces are usually described in an 
over-parametrized way, e.g., by rotation matrices or quater-
nions. Directly applying Eq. (16) to these over-parametrized 

node i

e f

node j
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representations breaks the constraints induced by the over-
parametrization. The over-parametrization results in addi-
tional degrees of freedom and thus introduces errors in the 
solution. To overcome this problem, one can use a minimal 
representation for the rotation (like, e.g., Euler angles in 3D). 
This, however, is subject to singularities. The singularities 
in the 2D case can be easily recovered by normalizing the 
angle, however in 3D this procedure is not straightforward. 

An alternative idea is to consider the underlying space 
as a manifold and to define an operator  that maps a lo-
cal variation Dx in the Euclidean space to a variation on the 
manifold, DxAx  Dx. We refer the reader to the work of 
Hertzberg [14] for the mathematical details. With this opera-
tor, a new error function can be defined as 

 ĕij 1Dx|i, Dx|j 2  def.
5  eij (x̆i     Dx|i, x̆j     Dx|j 2  (20)

 5 eij 1x ˘     Dx| 2 . ĕij1 J|ij  Dx|, (21)

where x̆ spans over the original over-parametrized space, 
for instance quaternions. The term Dx| is a small increment 
around the original position x̆ and is expressed in a mini-
mal representation. 

As an example, in 3D SLAM a good choice of the parametri-
zation of the rotations is the vector part of the unit quaternion. 
In more detail, one can represent the increments Dx| as 6D vec-
tors Dx|T5 1D t|T q|T 2 , where Dt|  denotes the translation and 
q|T5 1Dqx Dqy Dqz 2T is the vector part of the unit quaternion 
representing the 3D rotation. Conversely, x̆T5 1 t̆T q̆T 2  uses a 
quaternion q̆ to encode the rotational part. Thus, the opera-
tor  can be expressed by first converting Dq| to a full quaterni-
on Dq and then applying the transformation DxT5 1DtT DqT 2  
to x̆. In the equations describing the error minimization, these 
operations can nicely be encapsulated by the  operator. The 
Jacobian J|ij can be expressed by 

 J|ij5
'eij 1 x̆     Dx| 2

'Dx|
`
D|x50

  (22)

Since in the previous equation e depends only on Dx|i and 
Dx|j we can further expand it as follows: 

J|ij 5 ac 
'eij 1 x̆     Dx| 2

'Dx|i
`
D|x50

   c    
'eij 1 x̆     Dx| 2

'Dx|j
`
D|x50

cb
 (23)

Using the rule for the partial derivatives and exploiting 
the fact that the Jacobian is evaluated in Dx|5 0, the non-
zero blocks become: 

 
'eij 1x ˘     Dx|i 2

'Dx|i
5
'eij 1 x̆ 2
'x̆i

 #
x̆i     Dx|i

'Dx|i
`
D
|x50

 (24)

 
'eij 1x ˘     Dx|j

2
'Dx|j

5
'eij 1 x̆ 2
'x̆j

 #
x̆j     Dx|j

'Dx|j
`
D
|x50

. (25)

Accordingly, one can easily derive from the Jacobian not 
defined on a manifold of Eq. 17 a Jacobian on a manifold 
just by multiplying its non-zero blocks with the derivative 
of the  operator computed in x̆i and x̆j. 

With a straightforward extension of the notation, we 
can insert Eq. (21) in Eq. (9). This leads to the following 
linear system: 

 H|Dx|*5 2 b|. (26)

Since the increments Dx|* are computed in the local 
 Euclidean surroundings of the initial guess x̆, they need 
to be  re-mapped into the original over-parametrized 
space by the  operator. Accordingly, the update rule of 
Eq. (16) becomes 

A
|

ij

f f
B
|

ij

b
Aij Mi

d
Bij

b t

Mj

Algorithm 1 Computes the mean x* and the information 
matrix H* of the multivariate Gaussian approximation of 
the robot pose posterior from a graph of constraints. 

Require: x̆5 x̆1:T : initial guess. C5 5 8eij 1 # 2 , Vij 96: 
 constraints
Ensure: x*: new solution, H* new information matrix
 // find the maximum likelihood solution
 while ¬ converged do 
  b d 0  H d 0
  for all 8eij, Vij 9 . [ C do 
    //  Compute the Jacobians Aij and Bij of the error 

 function 

    Aij d
'eij 1x 2
'xi

`
x5x̆

  Bij d
'eij 1x 2
'xj

`
x5 x̆

   // compute the contribution of this constraint to 
the linear system 

  H3ii4 15Aij
T Vij Aij  H3ij4 15Aij

T Vij Bij

  H3ji4 15 Bij
T Vij Aij  H3jj4 15 Bij

T Vij Bij

  // compute the coefficient vector 
  b3i4 15Aij

T Vij eij  b3j4 15 Bij
T Vij eij

 end for 
 // keep the first node fixed 
 H3114 15 I
 //  solve the linear system using sparse Cholesky 

 factorization 
 Dx d solve 1H Dx5 2 b 2
 // update the parameters 
 x̆15 Dx

end while 
x* d x̆
H* d H
// release the first node 
H*3114 25 I
return 8x*, H*9
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x*5 x̆     Dx|*. (27)

Thus, formalizing the minimization problem on a mani-
fold consists of first computing a set of increments in a 
local Euclidean approximation around the initial guess 
by Eq. (26), and second accumulating the increments in 
the global non-Euclidean space by Eq. (27). Note that the 
linear system computed on a manifold representation has 
the same structure of the linear system computed on an 
Euclidean space. One can easily derive a manifold ver-
sion of a graph minimization from a non-manifold ver-
sion, only by defining an  operator and its Jacobian Mi

w.r.t. the corresponding parameter block. Algorithm 2 
provides a manifold version of the Gauss-Newton method 
for SLAM. 

The Hessian H| of the manifold problem no longer rep-
resents the information matrix of the trajectories but of the 
trajectory increments Dx|. To obtain the information ma-
trix of the trajectory Algorithm 2 computes H in the origi-
nal space of the poses x.

V. Practical Applications
In this section we describe some applications of the pro-
posed methods. In the first scenario we describe a com-
plete 2D mapping system, and in the second scenario we 
briefly describe a 3D mapping system and we highlight the 
advantages of a manifold representation. 

A. 2D Laser Based Mapping
We processed the data recorded with the mobile robot 
equipped with a laser range finder illustrated in Figure 8 at 

the Intel Research Laboratory in Seattle. This data consists 
of odometry measurements describing 2D  transformations 

FIG 8 A typical robot used in 2D mapping experiments. The platform is a 
standard ActivMedia Pioneer 2 equipped with a SICK-LMS range finder.

Algorithm 2 Manifold version of Algorithm 1. While this 
algorithm has the same computational complexity, it is 
substantially more robust than the non-manifold version, 
especially in the 3D case.

Require: x̆5 x̆1:T : initial guess. C5 5 8eij 1 # 2 , Vij96: constraints
Ensure: x*: new solution, H̆* new information matrix 

//find the maximum likelihood solution 
while ¬ converged do
     //Compute the auxiliary Jacobians M1:T over the mani 

fold 
for all x̆i [ x̆ do

Mi d
x̆i     Dx|i

'Dx|i
`
D|x50

end for 
b| d 0 H| d 0
for all 8eij, Vij 9 [ C do
   //Compute the Jacobians Aij and Bij of the error 

 function 

Aij d
'eij 1x 2
'xi

`
x5x̆

Bij d
'eij 1x 2
'xj

`
x5  ̆x

  //Project the Jacobians through the manifold 
A|ij d Aij Mi B|ij d Bij Mj

  // compute the nonzero Hessian blocks 
H| 3ii4 15 A|ij

T VijA
|

ij H| 3ij4 15 A|ij
T VijB

|
ij

H| 3ji4 15 B|ij
TVijA

|
ij H| 3jj4 15 B|ij

TVijB
|

ij

  // compute the coefficient vector 
b|3i4 15 A|ij

TVij 
eij b|3j4 15 B|ij

TVij 
eij

end for 
//keep the first node fixed 
H3114 15  I
 //solve the linear system using sparse Cholesky fac-
torization 
Dx| d solve 1H| Dx|5 2 b| 2
//update the parameters 
for all x̆i [ x̆ do

x̆i d x̆i Dx|i

end for 
end while 
x* d x̆
 //the maximum is found, now compute the Hessian in 
the original space 
H* d 0
for all 8eij, Vij9 [ C do
H3ii4 15 Aij

TVijAij H3ij4 15 Aij
TVijBij

H3ji4 15 Bij
TVijAij H3jj4 15 Bij

TVijBij

end for 
return 8x*, H*9
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(a) (b)

FIG 9 Intel Research Lab. Left: Unoptimized pose graph overlayed on top of the resulting map. Right: The 
optimized pose graph and  the resulting consistent map.

FIG 10 Pose uncertainty estimate for a real-world data set.

 corresponding to the movements of the platform between 
consecutive time frames, and 2D laser range data. 

The graph is constructed in the following way: 
 ■ Whenever the robot moves more than 0.5 meters or ro-

tates more than 0.5 radians, the algorithm adds a new 

vertex to the graph and labels it 
with the current laser observation. 

 ■ This laser scan is matched with 
the previously acquired one to 
improve the odometry estimate 
and the corresponding edge is 
added to the graph. We use a 
variant of the scan-matcher de-
scribed by Olson [26]. 

 ■ When the robot reenters a known 
area after traveling for a long time 
in a previously unknown region, 
the algorithm seeks for matches 
of the current scan with the past 
measurements (loop closing). If 
a matching between the current 
observation and the observation 
of another node succeeds, the al-
gorithm adds a new edge to the 
graph. The edge is labeled with 
the relative transformation that 
makes the two scans to overlap 
best. Matching the current mea-
surement with all previous scans 
would be extremely inefficient 
and error prone, since it does not 
consider the known prior about 
the robot location. Instead, the 
algorithm selects the candidate 
nodes in the past as the ones

 whose 3s marginal covariances contains the current robot 
pose. These covariances can be obtained as the diagonal 
blocks of the inverse of a reduced Hessian Hred. Hred is ob-
tained from H by removing rows and the columns of the 
newly inserted robot pose. Hred is the information matrix of 
all the trajectory when assuming fixed the current position. 

 ■ The algorithm performs the optimization whenever a 
loop closure is detected.
At the end of the run, the graph consists of 1,802 nodes 

and 3,546 edges. Even for this relatively large problem the 
optimization can be carried on in 100 ms on a standard 
laptop (Intel Core2@2.4 GhZ). Since the robot travels at a 
velocity of around 1 m/s the graph optimization could be 
executed after adding every node instead of after detecting 
a loop closure. Figure 9 shows the effect of the optimiza-
tion proc ess on the trajectory, while Figure 10 illustrates 
the uncertainty ellipses. The robot is located in  the region 
where the ellipse become small. Note that the poses in 
SE 12 2  do not need to be over parameterized, so in this case 
there  is no advantage in utilizing manifolds. 

B. 3D Laser Based Mapping
Extending to 3D  the SLAM algorithm presented in the 
previous section is rather straightforward. One has only 

Since the robot travels at a velocity of around 1 m/s the graph 
optimization could be executed after adding every node instead 
of after detecting a loop closure.
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to replace the 2D scan matching 
and loop closure detection with 
t heir 3D counterparts that oper-
ate on 3D point clouds instead 
than on single laser scans. In our 
implementation we utilize the 
popular ICP  algorithm [1] and for 
determining the loop closures we 
use the algorithm by Steder et al. 
[29]. Additionally, each node of the 
graph and each constraint lives in 
 SE(3). Typical outputs of this  algorithm are illustrated in 
Figures 2(a) and (b). 

The minimum number of parameters required to repre-
sent an e lement of SE 13 2  is 6, a possible choice consists in 

a 3D  translation vector plus the three Euler angles. Utiliz-
ing this parametrization leads to Algo rithm 1. However, this 
minimal representation is subject to singularities that can 
be avoided by utilizing an over-parametrized state space. 

Appendix 

In the following we will provide the definitions and the derivations for 
the Jacobians to implement the suggested algorithm. Due to space 
limitations we do not expand the Jacobians in the 3D case. However, 
these Jacobians can either be computed numerically or by using a 
computer algebra system. 

Error Functions and Jacobians for the 2D case
The basic entities in the 2D case are defined as 

 x i^ 5 1t i^, ui 2  (28)

 zij
 ̂5 1tij

 ̂, uij 2  (29)

where ti and tij are 2D vectors and ui and uij are rotation angles which 
are normalized to 32p, p 2 . The error function is 

 eij 1x 2  5 aRij
^ 1Ri

^ 1 tj2 ti 2 2 tij 2
uj2 ui2 uij

b ,  (30)

where Ri and Rij are the 2 3 2 rotation matrices of ui and uij

 Ri 5 acos 1ui 2 2 sin 1ui 2
sin 1ui 2 cos 1ui 2 b . (31)

The Jacobians of the error function are 

 Aij 5
'eij 1x 2
'xi

5 °2Rij
^R^

i R^
ij 
'R^

i
'ui

1tj2 ti 2
0^ 21

¢  (32)

 Bij 5
'eij 1x 2
'xj

5 a Rij
^R^

i 0
0^ 1

b . (33)

The  operator is defined as 

 x      Dx|5 x1 Dx| (34)

The angles are normalized to 3 2p, p 2  after applying the increments. 
The Jacobians of the manifold in the 2D case evaluate to the identity 
matrix: 

 Mi5
xi     Dx|i

'Dx|i
`
D
|x50

5 I3 (35)

 Mj5
xj     Dx|j

'Dx|j
`
D
|x50

5 I3 (36)

Error Functions for the 3D case
The basic entities in the 3D case are defined as 

 xi
^ 5 1 ti

^ , qi
^ 2  (37)

 zij
 5 1 t^ij^ , qij

^ 2 , (38)

where q denotes the unit quaternion q^ 5 1qx, qy, qz, qw 2^ , i.e., 
i q i 5 1. The error function is 

 eij 1x 2 5 1zij
21! 1xi

21!xj 2 2 31:64, (39)

where ! is the motion composition operator 

 xi ! xj 5 aqi 1 tj 2
qi
# qj
b  (40)

and the operator 1 # 2 31:64 selects the first 6 elements of its vector 
argument. 

The Jacobians of the error function are: 

 Aij5
'eij 1x 2
'xi

 (41)

 Bij5
'eij 1x 2
'xj

. (42)

The  operator maps Dx|i
^ 5 1D t|i

^ , Dq|i
^ 2  to the original space 

 xi        Dx|i 5 xi  !° D t|i

Dq|i"12 ||Dq|i ||2
¢ , (43)

where D t|i denotes the translation and Dq|̂  5 1Dqx, Dqy, Dqz 2^ is the 
vector part of the unit quaternion representing the 3D rotation and 
thus ||Dq|i|| # 1. 

The Jacobians of the manifold in the 3D case are given by 

 Mi5
xi     Dx|i

'Dx|i
 `
D
|x50

 (44)

 Mj5
xj     Dx|j

'Dx|j
 `
D
|x50

. (45)

The time to compute the linear system is negligible compared 
to the time to solve it. Accordingly, the choice of the 
parametrization mainly affects the convergence speed, not the 
time required to performone iteration.
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Alternativ ely, one can describe the relative perturbations of 
the optimization problem Dx| in a minimal representation 
while leaving the poses in the original  over- pa rametrized 
space. This leads to Algorithm 2. In this section we compare 
these two variants of the optimization algorithm on a pose-
graph obtained by a simulated robot. Note that the sparsity 
pattern of the Hessian is the same in both cases. Further-
more,  the time to compute the linear system is negligible 
compared to the time to solve it. Accordingly, the choice of 
the parametrization mainly affects the convergence speed,  
not the time required to perform one iteration. To highlight 
this effect we show the evolution of the error per iteration 

during  one optimization run by us-
ing the two algorithms. 

We use a simulated 3D data set 
of a robot traveling on the surface of 
a sphere. The measurements were 
affected by a significant error, and 
in itializing the system by  using the 
odometry information resulted in 
the graph  illustrated in the left part 
of Figure 11. Starting from this ini-
tial guess we executed the Gauss-
Newton Algorith m with and without 
the manifold linearization, i.e., here 
by using Euler angles. Figure 12 
shows the evolution of the error 
duri ng the iterations of the two ap-
proaches. First both approaches are 
able to decrease the error. However, 
not appropriately considering the 
sin gularities leads to a divergence 
of Algorithm 1 while Algorithm 2 
converges to the right solution. 

VI. Conclusions
In this paper we presented a tuto-
rial on graph-based SLAM. Our aim 

was to provide the re ader with sufficient details and insights 
to allow for an easy implementation of the proposed meth-
ods. The algorithms presented in this pape r can be used as a 
building blocks of more sophisticated methods, however op-
timized implementations of these algorithms can deal with 
surprisingly large problems. 

About the Authors
Giorgio Grisetti is working as a 
postdoctoral researcher in the Au-
tonomous Intelligent Systems Lab at 
Freiburg University. He was a Ph.D. 
student at University of Rome “La Sa-
pienza” in the Intelligent Systems Lab 
headed by Daniele Nardi where he 

received his Ph.D. degree in April 2006. He is currently 
member of Department of Systems and Computer Engi-
neering at “La Sapienza” University of Rome, as assistant 
professor. His research interests lie in the areas of mobile 
robotics. His previous and current contributions in robot-
ics aims to provide effective solutions to various mobile 
robot navigation problems including SLAM, localization, 
and path planning.

Wolfram Burgard is a professor for computer science at 
the University of Freiburg where he heads of the Labora-
tory for Autonomous Intelligent Systems. He received his 
Ph.D. degree in Computer Science from the University of 

102

103

104

105

106

107

108

0 2 4 6 8 10 12
Iteration

Gauss-Newton (Euler)
Gauss-Newton (Manifold)

F
(x

)

FIG 12 Evolution of the error F (x) for Gauss-Newton optimization with 
Euler angles and with manifold linearization to the 3D sphere data set.

The algorithms presented in this paper can be used as a 
building blocks of more sophisticated methods, however 
optimized implementations of these algorithms can deal with 
surprisingly large problems.

FIG 11 Pose-graph obtained by simulating a robot moving on a sphere. Left: Initial configuration. 
Right: After optimizing the pose graph the sphere h as accurately been recovered by Algorithm 2.
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Abstract Herewe propose a real-timemethod for low-drift
odometry andmapping using rangemeasurements from a 3D
laser scanner moving in 6-DOF. The problem is hard because
the range measurements are received at different times, and
errors in motion estimation (especially without an external
reference such asGPS) causemis-registration of the resulting
point cloud. To date, coherent 3D maps have been built by
off-line batch methods, often using loop closure to correct
for drift over time. Our method achieves both low-drift in
motion estimation and low-computational complexity. The
key idea that makes this level of performance possible is the
division of the complex problem of Simultaneous Localiza-
tion andMapping, which seeks to optimize a large number of
variables simultaneously, into two algorithms.One algorithm
performs odometry at a high-frequency but at low fidelity to
estimate velocity of the laser scanner. Although not neces-
sary, if an IMU is available, it can provide a motion prior and
mitigate for gross, high-frequency motion. A second algo-
rithm runs at an order of magnitude lower frequency for fine
matching and registration of the point cloud. Combination
of the two algorithms allows map creation in real-time. Our
method has been evaluated by indoor and outdoor experi-
ments as well as the KITTI odometry benchmark. The results
indicate that the proposedmethod can achieve accuracy com-
parable to the state of the art offline, batch methods.
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1 Introduction

3D Mapping remains a popular technology. The main issue
with laser ranging in which the laser moves has to do with
registration of the resulting point cloud. If the only motion
is the pointing of a laser beam with known internal kine-
matics of the lidar from a fixed base, this registration is
obtained simply. However, if the sensor base moves, as
in many applications of interest, laser point registration
has to do with both the internal kinematics and external
motion. The second one has to contain knowledge of how
the sensor is located and oriented for every range mea-
surement. Since lasers can measure distance up to several
hundred thousand times per second, high-rate pose estima-
tion is a significant issue. A common way to solve this
problem is to use an independent method of pose estima-
tion (such as with an accurate GPS/INS system) to register
the range data into a coherent point cloud in reference to
a fixed coordinate frame. When independent measurements
relative to a fixed coordinate frame are unavailable, the gen-
eral technique used is to register points using some sort
of odometry estimation, e.g. using combinations of wheel
motion, gyros, and by tracking features in range or visual
images.

Here we consider the case of creating maps using low-
drift odometry with a mechanically scanned laser ranging
device (optionally augmented with low-grade inertial mea-
surements) moving in 6-DOF. A key advantage of only using
laser ranging is that it is not sensitive to ambient lighting or
optical texture in the scene. New developments in laser scan-
ners have reduced the size and weight of such devices to the
level that they can be attached tomobile robots (including fly-
ing, walking or rolling) and even to people whomove around
in an environment to be mapped. Since we seek to push the
odometry toward the lowest possible drift in real-time, we
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Fig. 1 The method aims at motion estimation and mapping using a
moving 3D lidar. Since the laser points are received at different times,
distortion is present in the point cloud due to motion of the lidar (shown
in the left lidar cloud). Our proposed method decomposes the problem
by two algorithms running in parallel. An odometry algorithm estimates
velocity of the lidar and corrects distortion in the point cloud, then, a
mapping algorithmmatches and registers the point cloud to create amap.
Combination of the two algorithms ensures feasibility of the problem
to be solved in real-time

don’t consider issues related to loop closure. Indeed, while
loop closure could help further cancel the drift, we find that in
many practical cases such as mapping a floor of a buildings,
loop closure is unnecessary.

Our method, namely LOAM, achieves both low-drift in
motion estimation in 6-DOF and low-computational com-
plexity. The key idea that makes this level of performance
possible is the division of the typically complex problem
of simultaneous localization and mapping (illustrated in
Fig. 1), which seeks to optimize a large number of vari-
ables simultaneously, into two algorithms. One algorithm
performs odometry at a high-frequency but at low fidelity
to estimate velocity of the laser scanner moving through the
environment. Although not necessary, if an IMU is avail-
able, it can provide a motion prior and help account for
gross, high-frequency motion. A second algorithm runs at an
order of magnitude lower frequency for fine matching and
registration of the point cloud. Specifically, both algorithms
extract feature points located on edges and planar surfaces
and match the feature points to edge-line segments and pla-
nar surface patches, respectively. In the odometry algorithm,
correspondences of the feature points are found by ensuring
fast computation, while in the mapping algorithm, by ensur-
ing accuracy.

In the method, an easier problem is solved first as online
velocity estimation, after which, mapping is conducted as
batch optimization to produce high-precision motion esti-
mation and maps. The parallel algorithm structure ensures
feasibility of the problem to be solved in real-time. Further,
since motion estimation is conducted at a higher frequency,
mapping is given plenty of time to enforce accuracy. When
staggered to run at an order of magnitude slower than the
odometry algorithm, the mapping algorithm incorporates a
large number of feature points and uses sufficiently many
iterations to converge. The paper makes main contributions
as follows,

• Wepropose a software system using dual-layer optimiza-
tion to online estimate ego-motion and build maps;

• We carefully implement geometrical feature detection
and matching to meet requirements of the system: fea-
ture matching in the odometry algorithm is coarse and
fast to ensure high frequency, and is precise and slow in
the mapping algorithm to ensure low-drift;

• We test the method thoroughly with a large number of
datasets covering various types of environments;

• Wemake an honest attempt to present our work to a level
of detail allowing readers to re-implement the method.

The rest of this paper is organized as follows. In Sect. 2,
we discuss related work and how our work is unique com-
pared to the state of the art. In Sect. 3, we pose the research
problem formally. The lidar hardware and software systems
are described in Sect. 4. The odometry algorithm is presented
with details in Sect. 5, and the mapping algorithm in Sect. 6.
Experimental results are shown in Sect. 7. Finally, a discus-
sion and a conclusion aremade in Sects. 7 and 8, respectively.

2 Related work

Lidar has become a useful range sensor in robot naviga-
tion. For localization and mapping, one way is to perform
stop-and-scan to avoid motion distortion in point clouds
(Nuchter et al. 2007). Also, when the lidar scanning rate
is high compared to its extrinsic motion, motion distortion
can be neglectable. In this case, ICP methods (Pomerleau
et al. 2013) can be used to match laser returns between dif-
ferent scans. Additionally, a two-step method is proposed
to remove the distortion (Hong et al. 2010): an ICP based
velocity estimation step is followed by a distortion compen-
sation step, using the computed velocity. A similar technique
is also used to compensate for the distortion introduced by a
single-axis 3D lidar (Moosmann and Stiller 2011). However,
if the scanning motion is relatively slow, motion distortion
can be severe. This is especially the case when a 2-axis lidar
is used since one axis is typically much slower than the
other. Often, other sensors are used to provide velocity mea-
surements, with which, the distortion can be removed. For
example, the lidar cloud can be registered by state estima-
tion from visual odometry integrated with an IMU (Scherer
et al. 2012). When multiple sensors such as a GPS/INS and
wheel encoders are available concurrently, the problem is
often solved through Kalman filers or particle filters, build-
ing maps in real-time.

If a 2-axis lidar is used without aiding from other sen-
sors, motion estimation and distortion correction become
one problem. In Barfoot et al.’s methods, the sensor motion
is modeled as constant velocity (Dong and Barfoot 2012;
Anderson and Barfoot 2013a) and with Gaussian processes
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(Tong and Barfoot 2013; Anderson and Barfoot 2013b; Tong
et al. 2013. Rosen et al. use Gaussian processes to model the
continuous sensor motion and formulate the problem into
a factor-graph optimization problem (Rosen et al. 2014).
Additionally, Furgale et al. propose to use B-spline func-
tions to model the sensor motion (Furgale et al. 2012). Our
method uses a similar linear motion model as (Dong and
Barfoot (2012); Anderson and Barfoot (2013a) in the odom-
etry algorithm. In the mapping algorithm, however, rigid
body transform is used. Another method is that of Bosse
and Zlot (Bosse and Zlot 2009; Bosse et al. 2012; Zlot
and Bosse 2012). They invent a 3D mapping device called
Zebedee composed of a 2D lidar and an IMU attached to
a hand-bar through a spring (Bosse et al. 2012). Mapping
is conducted by hand-nodding the device. The trajectory is
recovered by a batch optimizationmethod that processes seg-
mented datasets with boundary constraints added between
the segments. In this method, measurements of the IMU are
used to register the laser points and the optimization is used
to correct the IMU drift and bias. Further, they use mul-
tiple 2-axis lidars to map an underground mine (Zlot and
Bosse 2012). This method incorporates an IMU and uses
loop closure to create large maps. The method runs faster
than real-time. However, since it relies on batch processing
to develop accurate maps, the method currently is hard to
use in online applications to provide real-time state estima-
tion and maps.

The same problem of motion distribution exists in vision-
based state estimation. With a rolling-shutter camera, image
pixels are perceived continuously over time, resulting in dif-
ferent read-out time for each pixel. The state-of-the-art visual
odometry methods that deal with rolling-shutter effect ben-
efit from an IMU (Guo et al. 2014; Li and Mourikis 2014).
The methods use IMU mechanization to compensate for the
motion given read-out time of the pixels. In this paper, we
also have the option of using an IMU to cancel nonlinear
motion, and the proposed method solves for linear motion.

From feature’s perspective,Barfoot et al.’smethods (Dong
and Barfoot 2012; Anderson and Barfoot 2013a, b; Tong
and Barfoot 2013) create visual images from laser intensity
returns and match visually distinct features (Bay et al. 2008)
between images to recover motion. This requires dense point
cloud with intensity values. On the other hand, Bosse and
Zlot’s method (Bosse and Zlot 2009; Bosse et al. 2012; Zlot
and Bosse 2012) matches spatio-temporal patches formed
of local point clusters. Our method has less requirement on
point clouddensity anddoes not require intensity values com-
pared to Dong and Barfoot (2012), Anderson and Barfoot
(2013a, b), and Tong and Barfoot (2013) since it extracts and
matches geometric features in Cartesian space. It uses two
types of point features, on edges and local planar surfaces,
and matches them to edge line segments and local planar
patches, respectively.

Our proposed method in real-time produces maps that are
qualitatively similar to those by Bosse and Zlot. The dis-
tinction is that our method can provide motion estimates for
guidance of an autonomous vehicle. The paper is an extended
version of our conference paper (Zhang and Singh 2014).We
evaluate the method with more experiments and present with
more details.

3 Notations and task description

The problemaddressed in this paper is to performego-motion
estimation with point clouds perceived by a 3D lidar, and
build a map for the traversed environment. We assume that
the lidar is intrinsically calibratedwith the lidar internal kine-
matics precisely known (the intrinsic calibration makes 3D
projection of the laser points possible). We also assume that
the angular and linear velocities of the lidar are smooth and
continuous over time, without abrupt changes. The second
assumptionwill be released by usage of an IMU, in Sects. 7.2
and 7.3.

As a convention in this paper, we use right uppercase
superscription to indicate the coordinate systems. We define
a sweep as the lidar completes one time of scan coverage.
We use right subscription k, k ∈ Z+ to indicate the sweeps,
and Pk to indicate the point cloud perceived during sweep k.
Let us define two coordinate systems as follows.

• Lidar coordinate system {L} is a 3D coordinate system
with its origin at the geometric center of the lidar (see
Fig. 2). Here, we use the convention of cameras. The x-
axis is pointing to the left, the y-axis is pointing upward,
and the z-axis is pointing forward. We denote a point i
received during sweep k as X L

(k,i). Further, we use T
L
k (t)

to denote the transformprojecting a point received at time
t to the beginning of the sweep k.

• World coordinate system {W } is a 3D coordinate system
coinciding with {L} at the initial pose. We denote a point

Fig. 2 An example 3D lidar using in experiment evaluation. We will
use data from this sensor to illustrate the method. The sensor consists
of a Hokuyo laser scanner driven by a motor for rotational motion,
and an encoder that measures the rotation angle. The laser scanner has
180◦ field of view and 0.25◦ resolution. The scanning rate is 40 lines/s.
The motor is controlled to rotate from −90◦ to 90◦ with the horizontal
orientation of the laser scanner as zero
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i in {W } as XW
(k,i) and denote TW

k (t) as the transform
projecting a point received at time t to {W }.

With assumptions and notations made, our lidar odometry
and mapping problem can be defined as

Problem Given a sequence of lidar cloud Pk , k ∈ Z+,
compute ego-motion of the lidar in the world, TW

k (t), and
build a map with Pk for the traversed environment.

4 System overview

4.1 Lidar hardware

The study of this paper is validated on four sensor sys-
tems: a back-and-forth spin lidar, a continuously-spinning
lidar, a Velodyne HDL-32 lidar, and the sensor system used
by the KITTI benchmark Geiger et al. (2012, 2013). We
use the first lidar hardware as an example to illustrate the
method, therefore we introduce the lidar hardware in the
front of the paper to help readers understand the method.
The rest sensors will be introduced in the experiment sec-
tion. As shown in Fig. 2, the lidar is based on a Hokuyo
UTM-30LX laser scanner which has 180◦ field of view with
0.25◦ resolution and 40 lines/s scanning rate. The laser scan-
ner is connected to a motor controlled to rotate at 180◦/s
angular speed between −90 and 90◦ with the horizontal
orientation of the laser scanner as zero. With this partic-
ular unit, a sweep is a rotation from −90 to 90◦ or in
the inverse direction (lasting for 1 s). Here, note that for
a continuously-spinning lidar, a sweep is simply a semi-
spherical or a full-spherical rotation. An onboard encoder
measures themotor rotation anglewith 0.25◦ resolution,with
which, the laser points are back-projected into the lidar coor-
dinates, {L}.

4.2 Software system overview

Figure 3 shows a diagram of the software system. Let P̂
be the points received in a laser scan. During each sweep,
P̂ is registered in {L}. The combined point cloud during
sweep k forms Pk . Then, Pk is processed in two algo-
rithms. Lidar odometry takes the point cloud and computes
the motion of the lidar between two consecutive sweeps. The
estimated motion is used to correct distortion in Pk . The

algorithm runs at a frequency around 10 Hz. The outputs
are further processed by lidar mapping, which matches and
registers the undistorted cloud onto a map at a frequency of
1 Hz. Finally, the pose transforms published by the two algo-
rithms are integrated to generate a transform output around
10 Hz, regarding the lidar pose with respect to the map. Sec-
tions 5 and 6 present the blocks in the software diagram in
detail.

5 Lidar odometry

5.1 Feature point extraction

We start with extraction of feature points from the lidar
cloud, Pk . We notice that many 3D lidars naturally gener-
ate unevenly distributed points in Pk . With the lidar in Fig. 2
as an example, the returns from the laser scanner has a reso-
lution of 0.25◦ within a scan. These points are located on
a scan plane. However, as the laser scanner rotates at an
angular speed of 180◦/s and generates scans at 40Hz, the
resolution in the perpendicular direction to the scan planes is
180◦/40 = 4.5◦. Considering this fact, the feature points are
extracted from Pk using only information from individual
scans, with co-planar geometric relationship.

We select feature points that are on sharp edges and planar
surface patches. Let i be a point inPk , i ∈ Pk , and letS be the
set of consecutive points of i returned by the laser scanner in
the same scan. Since the laser scanner generates point returns
in CW or CCW order, S contains half of its points on each
side of i and 0.25◦ intervals between two points (still with
the lidar in Fig. 2 as an example). Define a term to evaluate
the smoothness of the local surface,

c = 1

|S| · ||XL
(k,i)||

∥
∥
∥

∑

j∈S, j �=i

(X L
(k,i) − X L

(k, j))

∥
∥
∥. (1)

The term is normalized w.r.t. the distance to the lidar center.
This is particularly made to remove scale effect and the term
can be used for both near and far points.

The points in a scan are sorted based on the c values, then
feature points are selected with the maximum c’s, namely,
edge points, and the minimum c’s, namely planar points. To
evenly distribute the feature points within the environment,
we separate a scan into four identical subregions. Each subre-

Fig. 3 Block diagram of the
lidar odometry and mapping
software system
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Scan Plane

Laser

(a) (b)

Fig. 4 a The solid line segments represent local surface patches. Point
A is on a surface patch that has an angle to the laser beam (the dotted
orange line segments). Point B is on a surface patch that is roughly
parallel to the laser beam. We treat B as a unreliable laser return and do
not select it as a feature point. b The solid line segments are observable
objects to the laser. Point C is on the boundary of an occluded region
(the dotted orange line segment), and can be detected as an edge point.
However, if viewed from a different angle, the occluded region can
change and become observable. We do not treat D as a salient edge
point or select it as a feature point (Color figure online)

gion canprovidemaximally 2 edgepoints and4planar points.
A point i can be selected as an edge or a planar point only if
its c value is larger or smaller than a threshold (5×10−3), and
the number of selected points does not exceed the maximum
point number of a subregion.

While selecting feature points, we want to avoid points
whose surrounded points are selected, or points on local pla-
nar surfaces that are roughly parallel to the laser beams (point
B in Fig. 4a). These points are usually considered as unreli-
able. Also, we want to avoid points that are on boundary of
occluded regions (Li and Olson 2011). An example is shown
in Fig. 4b. Point C is an edge point in the lidar cloud because
its connected surface (the dotted line segment) is blocked by
another object. However, if the lidar moves to another point
of view, the occluded region can change and become observ-
able. To avoid the aforementioned points to be selected, we
find again the set of points S. A point i can be selected only
if S does not form a surface patch whose normal is within
10◦ to the laser beam, and there is no point in S that is dis-
connected from i by a gap in the direction of the laser beam
and is at the same time closer to the lidar then point i (e.g.
point B in Fig. 4b).

In summary, the feature points are selected as edge points
starting from themaximum c value, and planar points starting
from the minimum c value, and if a point is selected,

• The number of selected edge points or planar points can-
not exceed the maximum of the subregion, and

• None of its surrounding point is already selected, and
• It cannot be on a surface patch whose normal is within
10◦ to the laser beam, or on boundary of an occluded
region.

An example of extracted feature points from a corridor scene
is shown in Fig. 5. The edge points and planar points are
labeled in yellow and red colors, respectively.

Fig. 5 An example of extracted edge points (yellow) and planar points
(red) from lidar cloud taken in a corridor. Meanwhile, the lidar moves
toward the wall on the left side of the figure at a speed of 0.5 m/s, this
results in motion distortion on the wall (Color figure online)

5.2 Finding feature point correspondence

The odometry algorithm estimates motion of the lidar within
a sweep. Let tk be the starting time of a sweep k. At the end
of sweep k − 1, the point cloud perceived during the sweep,
Pk−1, is projected to time stamp tk , illustrated in Fig. 6 (we
will discuss transforms projecting the points in Sect. 5.3).
We denote the projected point cloud as P̄k−1. During the
next sweep k, P̄k−1 is used together with the newly received
point cloud, Pk , to estimate the motion of the lidar.

Let us assume that both P̄k−1 andPk are available for now,
and start with finding correspondences between the two lidar
clouds. With Pk , we find edge points and planar points from
the lidar cloud using the methodology discussed in the last
section. Let Ek and Hk be the sets of edge points and planar
points, respectively. We will find edge lines from P̄k−1 as
correspondences of the points in Ek , and planar patches as
correspondences of those inHk .

Note that at the beginning of sweep k, Pk is an empty
set, which grows during the course of the sweep as more

Fig. 6 Project point cloud to the end of a sweep. The blue colored line
segment represents the point cloud perceived during sweep k,Pk−1. At
the end of sweep k − 1, Pk−1 is projected to time stamp tk to obtain
P̄k−1 (the green colored line segment). Then, during sweep k, P̄k−1 and
the newly perceived point cloud Pk (the orange colored line segment)
are used together to estimate the lidar motion (Color figure online)
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(a) (b)

Fig. 7 Finding an edge line as the correspondence for an edge point
in Ẽk (a), and a planar patch as the correspondence for a planar point
in H̃k (b). In both (a, b), j is the closest point to the feature point i ,
found in P̄k−1. The orange lines represent the same scan of j , and the
blue lines are the preceding and following scans. To find the edge line
correspondence in a, we find another point, l, on the blue lines, and
the correspondence is represented as ( j, l). To find the planar patch
correspondence in b, we find another two points, l andm, on the orange
line and the blue line, respectively. The correspondence is ( j, l, m)

(Color figure online)

points are received. Lidar odometry recursively estimates
the 6-DOF motion during the sweep, and gradually includes
more points as Pk increases. Ek and Hk are projected to the
beginning of the sweep (again, we will discuss transforms
projecting the points later). Let Ẽk and H̃k be the projected
point sets. For each point in Ẽk and H̃k , we are going to find
the closest neighbor point in P̄k−1. Here, P̄k−1 is stored in a
3D KD-tree (Berg et al. 2008) in {Lk} for fast index.

Figure 7a represents the procedure of finding an edge line
as the correspondence of an edge point. Let i be a point in
Ẽk , i ∈ Ẽk . The edge line is represented by two points. Let j
be the closest neighbor of i in P̄k−1, j ∈ P̄k−1, and let l be
the closest neighbor of i in the preceding and following two
scans to the scan of j . ( j, l) forms the correspondence of i .
Then, to verify both j and l are edge points, we check the
smoothness of the local surface based on (1) and require that
both points have c > 5×10−3. Here, we particularly require
that j and l are from different scans considering that a single
scan cannot containmore than one points from the same edge
line. There is only one exception where the edge line is on
the scan plane. If so, however, the edge line is degenerated
and appears as a straight line on the scan plane, and feature
points on the edge line should not be extracted in the first
place.

Figure 7b shows the procedure of finding a planar patch
as the correspondence of a planar point. Let i be a point in
H̃k , i ∈ H̃k . The planar patch is represented by three points.
Similar to the last paragraph, we find the closest neighbor of
i in P̄k−1, denoted as j . Then, we find another two points,
l and m, as the closest neighbors of i , one in the same scan
of j but not j , and the other in the preceding and following
scans to the scan of j . This guarantees that the three points
are non-collinear. To verify that j , l, and m are all planar
points, again, we check the smoothness of the local surface
and require c < 5 × 10−3.

With the correspondences of the feature points found, now
we derive expressions to compute the distance from a feature

point to its correspondence. We will recover the lidar motion
by minimizing the overall distances of the feature points in
the next section.We start with edge points. For a point i ∈ Ẽk ,
if ( j, l) is the corresponding edge line, j, l ∈ P̄k−1, the point
to line distance can be computed as

dE =
∣
∣
∣(X̃

L
(k,i) − X̄

L
(k−1, j)) × (X̃

L
(k,i) − X̄

L
(k−1,l))

∣
∣
∣

∣
∣
∣X̄

L
(k−1, j) − X̄

L
(k−1,l)

∣
∣
∣

, (2)

where X̃
L
(k,i), X̄

L
(k−1, j), and X̄

L
(k−1,l) are the coordinates of

points i , j , and l in {Lk}, respectively. Then, for a point i ∈
H̃k , if ( j, l, m) is the corresponding planar patch, j, l,m ∈
P̄k−1, the point to plane distance is

dH =

∣
∣
∣
∣
∣

(X̃
L
(k,i) − X̄

L
(k−1, j))

((X̄
L
(k−1, j) − X̄

L
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L
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∣
∣
∣
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∣
∣(X̄
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L
(k−1,l)) × (X̄

L
(k−1, j) − X̄

L
(k−1,m))
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(3)

5.3 Motion estimation

The lidar motion is modeled with constant angular and linear
velocities during a sweep. This allows us to linear interpo-
late the pose transform within a sweep for the points that are
received at different times. Let t be the current time stamp,
and recall that tk is the starting timeof the current sweep k. Let
T L
k (t) be the lidar pose transform between [tk, t]. T L

k (t) con-
tains 6-DOF motion of the lidar, T L

k (t) = [τ L
k (t), θ L

k (t)]T ,
where τ L

k (t) = [tx , ty, tz]T is the translation and θ L
k (t) =

[θx , θy, θz]T is the rotation in {Lk}. Given θ L
k (t), the cor-

responding rotation matrix can be defined by the Rodrigues
formula (Murray and Sastry 1994),

RL
k (t) = eθ̂ L

k (t) = I + θ̂ L
k (t)

||θ L
k (t)|| sin ||θ L

k (t)||

+
(

θ̂ L
k (t)

||θ L
k (t)||

)2

(1 − || cos θ L
k (t)||). (4)

where θ̂ L
k (t) is the skew symmetric matrix of θ L

k (t).
Given a point i , i ∈ Pk , let t(k,i) be its time stamp, and let

T L
(k,i) be the pose transform between [tk, t(k,i)]. T L

(k,i) can

be computed by linear interpolation of T L
k (t),

T L
(k,i) = t(k,i) − tk

t − tk
T L
k (t). (5)

Here, note that T L
k (t) is a changing variable over time and

the interpolation uses the transform of current time t . Recall
that Ek and Hk are the sets of edge points and planar points
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extracted from Pk . The following equation helps project Ek
and Hk to the beginning of the sweep, namely Ẽk and H̃k ,

X̃
L
(k,i) = RL

(k,i)X
L
(k,i) + τ L

(k,i), (6)

where X L
(k,i) is a point in Ek or Hk and X̃

L
(k,i) is the corre-

sponding point in Ẽk or H̃k . RL
(k,i) and τ L

(k,i) are the rotation

matrix and translation vector corresponding to T L
(k,i).

Recall that (2) and (3) compute the distances between
points in Ẽk and H̃k and their correspondences. Combining
(2) and (6), we can derive a geometric relationship between
an edge point in Ek and the corresponding edge line,

fE (X L
(k,i), T

L
k (t)) = dE , i ∈ Ek . (7)

Similarly, combining (3) and (6), we can establish another
geometric relationship between a planar point inHk and the
corresponding planar patch,

fH(X L
(k,i), T

L
k (t)) = dH, i ∈ Hk . (8)

Finally, we solve the lidar motion with the Levenberg-
Marquardt method (Hartley and Zisserman 2004). Stacking
(7) and (8) for each feature point in Ek and Hk , we obtain a
nonlinear function,

f (T L
k (t)) = d, (9)

where each row of f corresponds to a feature point, and d
contains the corresponding distances. We compute the Jaco-
bian matrix of f with respect to T L

k (t), denoted as J, where
J = ∂ f/∂T L

k (t). Then, (9) can be solved through nonlinear
iterations by minimizing d toward zero,

T L
k (t) ← T L

k (t) − (JT J + λdiag(JT J))−1JT d. (10)

λ is a factor determined by theLevenberg-Marquardtmethod.

5.4 Lidar odometry algorithm

Lidar odometry algorithm is shown inAlgorithm1. The algo-
rithm takes as inputs the point cloud from the last sweep,
P̄k−1, the growing point cloud of the current sweep, Pk , and
the pose transform from the last recursion as initial guess,
T L
k (t). If a new sweep is started, T L

k (t) is set to zero to
re-initialize (line 4–6). Then, the algorithm extracts feature
points from Pk to construct Ek and Hk on line 7. For each
feature point, we find its correspondence in P̄k−1 (line 9–19).
The motion estimation is adapted to a robust fitting frame-
work (Andersen 2008). On line 15, the algorithm assigns a
bisquare weight for each feature point as the following equa-
tion. The feature points that have larger distances to their

Algorithm 1: Lidar Odometry

1 input : P̄k−1, Pk , TL
k (t) from the last recursion at initial guess

2 output : P̄k , newly computed TL
k (t)

3 begin
4 if at the beginning of a sweep then
5 TL

k (t) ← 0;
6 end
7 Detect edge points and planar points in Pk , put the points in

Ek and Hk , respectively;
8 for a number of iterations do
9 for each edge point in Ek do

10 Find an edge line as the correspondence, then
compute point to line distance based on (7) and stack
the equation to (9);

11 end
12 for each planar point inHk do
13 Find a planar patch as the correspondence, then

compute point to plane distance based on (8) and
stack the equation to (9);

14 end
15 Compute a bisquare weight for each row of (9);
16 Update TL

k (t) for a nonlinear iteration based on (10);
17 if the nonlinear optimization converges then
18 Break;
19 end
20 end
21 if at the end of a sweep then
22 Project each point in Pk to tk+1 and form P̄k ;
23 Return TL

k (t) and P̄k ;
24 end
25 else
26 Return TL

k (t);
27 end
28 end

correspondences are assigned with smaller weights, and the
feature points with distances larger than a threshold are con-
sidered as outliers and assigned with zero weights.

w =
{

(1 − α2)2 − 1 < α < 1,
0 otherwise,

(11)

where

α = r

6.9459σ
√
1 − h

.

In the above equation, r is the corresponding residual in
the least square problem, σ is the absolute deviation of
the residuals from the median, and h is the leverage value
or the corresponding element on the diagonal of matrix
J(JT J))−1JT where J is the same Jacobian matrix used in
(10). Then, on line 16, the pose transform is updated for one
iteration. The nonlinear optimization terminates if conver-
gence is found, or the maximum iteration number is met. If
the algorithm reaches the end of a sweep, Pk is projected
to time stamp tk+1 using the estimated motion during the
sweep, forming P̄k . This makes ready for the next sweep to
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Fig. 8 Illustration of mapping process. The blue curve represents the
lidar pose on the map, TW

k−1(tk), generated by the mapping algorithm
at sweep k − 1. The orange curve indicates the lidar motion during the
entire sweep k, T L

k (tk+1), computed by the odometry algorithm. With
TW
k−1(tk) and T L

k (tk+1), the undistorted point cloud published by the

odometry algorithm is projected onto themap, denoted as Q̄k (the green
line segments), and matched with the existing cloud on the map,Qk−1
(the black colored line segments) (Color figure online)

be matched to P̄k . Otherwise, only the transform T L
k (t) is

returned by the algorithm for the next round of recursion.

6 Lidar mapping

The mapping algorithm runs at a lower frequency then the
odometry algorithm, and is called only once per sweep.
At the end of sweep k, lidar odometry generates a undis-
torted point cloud, P̄k , and simultaneously a pose transform,
T L
k (tk+1), containing the lidar motion during the sweep,

between [tk, tk+1]. The mapping algorithmmatches and reg-
isters P̄k in the world coordinates, {W }, illustrated in Fig. 8.
To explain the procedure, let us defineQk−1 as the point cloud
on the map, accumulated until sweep k −1, and let TW

k−1(tk)
be the pose of the lidar on the map at the end of sweep k − 1,
tk . With the output from lidar odometry, the mapping algo-
rithm extents TW

k−1(tk) for one sweep from tk to tk+1, to
obtain TW

k (tk+1), and transforms P̄k into the world coordi-
nates, {W }, denoted as Q̄k . Next, the algorithm matches Q̄k

with Qk−1 by optimizing the lidar pose TW
k (tk+1).

The feature points are extracted in the same way as in
Sect. 5.1, but 10 times of feature points are used. To find cor-
respondences for the feature points, we store the point cloud
on the map, Qk−1, in 10 m cubic areas. The points in the
cubes that intersect with Q̄k are extracted and stored in a 3D
KD-tree (Berg et al. 2008) in {W }.We find the points inQk−1

within a certain region (10cm× 10cm× 10cm) around the
feature points. Let S ′ be a set of surrounding points. For an
edge point, we only keep points on edge lines in S ′, and
for a planar point, we only keep points on planar patches.
The points are distinguished between edge points and pla-
nar points based on their c values. Here, we use the same
threshold (5 × 10−3) as in Sect. 5.1. Then, we compute the
covariance matrix of S ′, denoted as M, and the eigenvalues
and eigenvectors of M, denoted as V and E, respectively.
These values determine poses of the point clusters and hence
the point-to-line and point-to-plane distances. Specifically, if
S ′ is distributed on an edge line, V contains one eigenvalue

Fig. 9 Integration of pose transforms. The blue colored region illus-
trates the lidar pose from the mapping algorithm, TW

k−1(tk), generated
once per sweep. The orange colored region is the lidar motion within
the current sweep, T L

k (t), computed by the odometry algorithm. The
motion estimation of the lidar is the combination of the two transforms,
at the same frequency as T L

k (t) (Color figure online)

significantly larger than the other two, and the eigenvector
in E associated with the largest eigenvalue represents the
orientation of the edge line. On the other hand, if S ′ is dis-
tributed on a planar patch, V contains two large eigenvalues
with the third one significantly smaller, and the eigenvector
in E associated with the smallest eigenvalue denotes the ori-
entation of the planar patch. The position of the edge line or
the planar patch is calculated such that the line or the plane
passes through the centroid of S ′.

To compute the distance from a feature point to its corre-
spondence, we select two points on an edge line, and three
points on a planar patch. This allows the distances to be com-
puted using the same formulations as (2) and (3). Then, an
equation is derived for each feature point as (7) or (8), but dif-
ferent in that all points in Q̄k share the same time stamp, tk+1.
The nonlinear optimization is solved again by the Levenberg-
Marquardt method (Hartley and Zisserman 2004) adapted to
robust fitting (Andersen 2008), and then Q̄k is registered on
the map.

To evenly distribute the points, themap cloud is downsized
byvoxel-gridfilters (Rusu andCousins 2011) each timeanew
scan ismergedwith themap.The voxel-grid filters average all
points in each voxel, leaving an averaged point in the voxel.
Edge points and planar points use different voxel sizes. With
edge points, the voxel size is 5cm×5cm×5cm. With planar
points, it is 10cm×10cm×10cm. The map is truncated in a
500m× 500m×500m region surrounding the sensor to limit
the memory usage.

Integration of the pose transforms is illustrated in Fig. 9.
The blue colored region represents the pose output from lidar
mapping, TW

k−1(tk), generated once per sweep. The orange
colored region represents the transform output from lidar
odometry, T L

k (t), at a frequency round 10Hz. The lidar pose
with respect to the map is the combination of the two trans-
forms, at the same frequency as lidar odometry.

7 Experiments

During experiments, the algorithms processing the lidar data
run on a laptop computer with 2.5 GHz quad cores and 6Gib
memory, on topof the robot operating system (ROS) (Quigley
et al. 2009) in Linux. The method consumes a total of two
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Fig. 10 Maps generated in a, b a narrow and long corridor, c, d a large lobby, e, f a vegetated road, and g, h an orchard between two rows of trees.
The lidar is placed on a cart in indoor tests, and mounted on a ground vehicle in outdoor tests. All tests use a speed of 0.5m/s

threads, the odometry and mapping programs run on two
separate threads.

7.1 Accuracy tests

The method has been tested in indoor and outdoor environ-
ments using the lidar in Fig. 2. During indoor tests, the lidar
is placed on a cart together with a battery and a laptop com-
puter. One person pushes the cart and walks. Figure 10a, c
show maps built in two representative indoor environments,
a narrow and long corridor and a large lobby. Figure 10b,
d show two photos taken from the same scenes. In outdoor
tests, the lidar is mounted to the front of a ground vehicle.
Figrue 10e, g show maps generated from a vegetated road
and an orchard between two rows of trees, and photos are
presented in Fig. 10f, h, respectively. During all tests, the
lidar moves at a speed of 0.5 m/s.

To evaluate local accuracy of the maps, we collect a sec-
ond set of lidar clouds from the same environments. The
lidar is kept stationary and placed at a few different places
in each environment during data selection. The two point
clouds are matched and compared using the point to plane
ICPmethod (Rusinkiewicz and Levoy 2001). After matching
is complete, the distances between one point cloud and the
corresponding planar patches in the second point cloud are
considered as matching errors. Figure 11 shows the density
of error distributions. It indicates smaller matching errors
in indoor environments than in outdoor. The result is reason-

Fig. 11 Matching errors for corridor (red), lobby (green), vegetated
road (blue) and orchard (black), corresponding to the four scenes in
Fig. 10 (Color figure online)

able because feature matching in natural environments is less
exact than in manufactured environments.

Further, we want to understand how lidar odometry and
lidar mapping function and contribute to the final accuracy.
To this end, we take the dataset in Fig. 1 and show output of
each algorithm. The trajectory is 32m in length. Figure 12a
uses lidar odometry output to register laser points directly,
while Fig. 12b is the final output optimized by lidar mapping.
As we mention at the beginning, the role of lidar odometry
is to estimate velocity and remove motion distortion in point
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Fig. 12 Comparison between a lidar odometry output and b final lidar
mapping output with the dataset in Fig. 1. The role of lidar odometry is
to estimate velocity and remove motion distortion in point clouds. This
algorithm has a low fidelity. Lidar mapping further performs careful
scan matching to warrant accuracy on the map

clouds. The low-fidelity of lidar odometry cannot warrant
accurate mapping. On the other hand, lidar mapping further
performs careful scan matching to warrant accuracy on the
map. Table 1 shows computation time brake-down of the
two programs in the accuracy tests. We see lidar mapping
takes totally 6.4 times of computation of lidar odometry to
remove drift. Here, note that lidar odometry is called 10 times
while lidar mapping is called once, resulting in same level of
computation load on the two threads.

Additionally, we conduct tests to measure accumulated
drift of the motion estimate. We choose corridor for indoor
experiments that contains a closed loop. This allows us to
start and finish at the same place. The motion estimation
generates a gap between the starting and finishing positions,
which indicates the amount of drift. For outdoor experiments,
we choose orchard environment. The ground vehicle that car-
ries the lidar is equipped with a high accuracy GPS/INS for
ground truth acquisition. The measured drifts are compared
to the distance traveled as the relative accuracy, and listed
in Table 2. Specifically, Test 1 uses the same datasets with
Fig. 10a, g. In general, the indoor tests have a relative accu-
racy around 1% and the outdoor tests are around 2.5%.

7.2 Tests with IMU assistance

We attach an Xsens MTi-10 IMU to the lidar to deal with
fast velocity changes. The point cloud is pre-processed in
two ways before sending to the proposed method, (1) with

Table 1 Computation break-down for accuracy tests

Program Build Match Others (ms) Total (ms)

KD-tree (ms) Features (ms)

Odometry 11 23 14 48

Mapping 58 134 117 309

Table 2 Relative errors for motion estimation drift

Environment Test 1 Test 2

Distance (m) Error (%) Distance (m) Error (%)

Corridor 58 0.9 46 1.1

Orchard 52 2.3 67 2.8

orientation from the IMU, the point cloud received in one
sweep is rotated to align with the initial orientation of the
lidar in that sweep, (2) with acceleration measurement, the
motion distortion is partially removed as if the lidar moves at
a constant velocity during the sweep. Here, the IMU orienta-
tion is obtained by integrating angular rates from gyros and
readings from accelerometers in a Kalman filter (Thrun et al.
2005). After IMU pre-processing, the motion left to solve
is the orientation drift from the IMU, assumed to be linear
within a sweep, and the linear velocity. Hence, it satisfies the
assumption that the lidar has linear motion within a sweep.
The point cloud is then processed by the lidar odometry and
mapping programs.

Figure 13a shows a sample result. A person holds the lidar
and walks on a staircase. When computing the red curve, we
use orientation provided by the IMU, and our method only
estimates translation. The orientation drifts over 25◦ during
5 mins of data collection. The green curve relies only on
the optimization in our method, assuming no IMU is avail-
able. The blue curve uses the IMU data for preprocessing
followed by the proposed method. We observe small differ-
ence between the green and blue curves. Figure 13b presents
the map corresponding to the blue curve. In Fig. 13c, we
compare two closed views of the maps in the yellow rectan-
gular in Fig. 13b. The upper and lower figures correspond to
the blue and green curves, respectively. Careful comparison
finds that the edges in the upper figure are sharper than those
in the lower figure.

Table 3 compares relative errors inmotion estimationwith
and without using the IMU. The lidar is held by a person
walking at a speed of 0.5 m/s and moving the lidar up and
down at a magnitude around 0.5 m. The ground truth is man-
ually measured by a tape ruler. In all four tests, using the
proposed method with assistance from the IMU gives the
highest accuracy, while using orientation from the IMU only
leads to the lowest accuracy. The results indicate that the IMU
is effective in canceling the nonlinear motion, with which,
the proposed method handles the linear motion.

7.3 Tests with micro-helicopter datasets

We further evaluate the method with data collected from an
octo-rotor micro aerial vehicle. As shown in Fig. 14, the heli-
copter is mounted with a 2-axis lidar, which shares the same
design with the one in Fig. 2 except that the laser scanner
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Fig. 13 Comparison of results with/without aiding from an IMU. A
person holds the lidar and walks on a staircase. The black dot is the
starting point. In a, the red curve is computed using orientation from
the IMU and translation estimated by our method, the green curve relies
on the optimization in ourmethod only, and the blue curve uses the IMU
data for preprocessing followed by themethod.b is themap correspond-
ing to the blue curve. In c, the upper and lower figures correspond to the
blue and green curves, respectively, using the region labeled by the yel-
low rectangle in b. The edges in the upper figure are sharper, indicating
more accuracy on the map (Color figure online)

Table 3 Motion estimation errors with/without using IMU

Environment Distance (m) Error

IMU (%) Ours (%) Ours+IMU (%)

Corridor 32 16.7 2.1 0.9

Lobby 27 11.7 1.7 1.3

Vegetated road 43 13.7 4.4 2.6

Orchard 51 11.4 3.7 2.1

Fig. 14 a Octo-rotor helicopter used in the study. A 2-axis lidar is
mounted to the font of the helicopter with a zoomed in view in b. The
lidar is based on a Hokuyo laser scanner, sharing the same design with
the one in Fig. 2 except the laser scanner spins continuously

Fig. 15 Results from a small bridge. a shows trajectory of the heli-
copter. The black dot is the starting position. b, c show the map built by
the proposed method, where b is a zoomed in view of the area inside
the yellow rectangle in c. The helicopter is manually flown during data
collection. Starting from one side, it flies underneath the bridge, turns
back, and flies underneath the bridge again (Color figure online)

spins continuously. For such a lidar unit, a sweep is defined as
a semi-spherical rotation on the slow axis, lasting for one sec-
ond. A Microstrain 3DM-GX3-45 IMU is also mounted on
the helicopter. The odometry and mapping programs process
both lidar and IMU data.

We show results from two datasets in Figs. 15 and 16.
For both tests, the helicopter is manually flown at a speed
of 1 m/s. In Fig. 15, the helicopter starts from one side of
the bridge, flies underneath the bridge and turns back to fly
underneath the bridge for the second time. In Fig. 16, the
helicopter starts with taking-off from the ground and ends
with landing back on the ground. In Figs. 15a and 16a, we
show trajectories of the flights, and in Figs. 15b and 16b,
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Fig. 16 Results from the front of a house. a shows trajectory of the
helicopter. The black dot is the starting position. b, c show the map built
by the proposed method, where b is a zoomed in view of the area inside
the yellow rectangle in c. The helicopter is manually flown, starting
with taking-off from the ground and ending with landing on the ground
(Color figure online)

we show zoomed in views of the maps, corresponding to the
areas inside the yellow rectangles in Figs. 15c and 16c. We
are not able to acquire ground truth for the helicopter poses
or the maps. For relative small environments as in both tests,
the method continuously re-localizes on the maps built at the
beginning of the tests. Hence, calculating loop closure errors
becomes meaningless. Instead, we can only visually exam
accuracy of the maps in the zoomed in views.

7.4 Tests with a Velodyne lidar

These experiments use a Velodyne HDL-32E lidar mounted
on two vehicles shown in Fig. 17. Figure 17a is a utility

Fig. 17 Vehicles carrying a Velodyne HDL-32E lidar for data logging.
a is a utility vehicle driven on sidewalks and off-road terrains. b is a
passenger vehicle driven on streets

vehicle driven on sidewalks and off-road terrains. Figure 17b
is a passenger vehicle driven on streets. For both vehicles, the
lidar is mounted high on the top to avoid possible occlusions
by the vehicle body.

The Velodyne HDL-32E is a single-axis laser scanner. It
projects 32 laser beams simultaneously into the 3D environ-
ment. We treat each plane formed by a laser beam as a scan
plane. A sweep is defined as a full-circle rotation of the laser
scanner. The lidar acquires scans at 10 Hz by default. We
configure lidar odometry to run at 10 Hz processing individ-
ual scans. Lidar mapping stacks scans for a second to do the
batch optimization. The computation brake-down for the two
programs is shown in Table 4.

Figure 18 shows results of mapping the university cam-
pus. The data is loggedwith the vehicle in Fig. 17a for 1.0 km

Table 4 Computation break-down for Velodyne HDL-32E tests

Program Build Match Others (ms) Total (ms)

KD-tree (ms) Features (ms)

Odometry 18 35 16 69

Mapping 131 283 149 563

Fig. 18 Results of mapping university campus. The overall run is
1.0 km and the vehicle speed is at 2–3 m/s. a shows the final map
built and b shows the trajectory and registered laser points overlaid on
a satellite image. The horizontal position error from matching with the
satellite image is ≤1m
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Fig. 19 Results ofmapping streets. The path is 3.6 km in length and the
vehicle speed is at 11–18 m/s. The figures are in the same arrangement
with Fig. 18. The horizontal position error from matching with the
satellite image is ≤2m

of travel. The driving speed during the test is maintained at
2–3 m/s. Figure 18a shows the final map built. Figure 18b
shows the estimated trajectory (red curve) and the registered
laser points overlaid on a satellite image. By matching the
trajectory to the sidewalk (the vehicle is not driven on the
street) and the laser points to the building walls, we deter-
mine the horizontal position drift is≤1 m. By comparison of
mapped buildings from both sides, we are able to determine
the vertical drift to be ≤1.5 m. This results in the overall
position error to be ≤0.2% of the distance traveled.

Figure 19 shows results from another test. We drive the
vehicle in Fig. 17b on streets for 3.6 km. Except waiting
for traffic lights, the vehicle speed is mostly between 11–
18 m/s. The figures in Fig. 19 are organized in the same
way as Fig. 18. By comparison with the satellite image, we
determine the horizontal position error is ≤ 2m. For vertical
accuracy, however, we are not able to evaluate.

7.5 Tests with KITTI datasets

Finally, we test themethod using theKITTI odometry bench-
mark (Geiger et al. 2012, 2013). The datasets are loggedwith
sensorsmounted on top of a passenger vehicle in road driving
scenarios. As shown in Fig. 20, the vehicle is equipped with

Fig. 20 a Vehicle used by the KITTI benchmark for data logging. The
vehicle is mounted with a Velodyne lidar, stereo cameras, and a high
accuracy GPS/INS for ground truth acquisition. Our method uses data
from the Velodyne lidar. b Zoomed in view of the sensors. Images taken
from http://www.cvlibs.net/datasets/kitti/

color stereo cameras, monochrome stereo cameras, a Velo-
dyne HDL-64E laser scanner, and a high accuracy GPS/INS
for ground truth. The laser data is logged at 10 Hz and used
by the method for motion estimation. To reach the maximum
accuracy possible, the scan data is processed in a slightly dif-
ferentway than in Sect. 7.4. Instead of stacking 10 scans from
lidar odometry, lidar mapping runs at the same frequency
as lidar odometry and processes each individual scan. This
results in the system running at 10% of the real-time speed,
taking one second to process a scan.

The datasets contain 11 tests with the GPS/INS ground
truth provided. The maximum driving speed in the datasets
reaches 85 km/h (23.6 m/s). The data covers mainly three
types of environments: “urban“ with buildings around,
“country” on small roads with vegetations in the scene, and
“highway” where roads are wide and the vehicle speed is
fast. Figure 21 presents sample results from the three envi-
ronments. On the top row, we show estimated trajectories of
the vehicle compared to the GPS/INS ground truth. On the
middle and bottom rows, the map and a corresponding image
is shown from each dataset. The maps are color coded by
elevation. The complete test results with the 11 datasets are
listed in Table 5. The three tests from left to right in Fig. 21
are datasets 0, 3, and 1 in the table. Here, the accuracy is
calculated by averaging relative position errors using seg-
mented trajectories at 100, 200, . . . , 800m lengthes, based
on 3D coordinates.

Our resulting accuracy is ranked #2 on the KITTI odom-
etry benchmark1 irrespective of sensing modality, with an
average of 0.88% position error compared to the distance
traveled. The results outperform the state of the art vision-
based methods (stereo visual odometry methods) (Persson
et al. 2015; Badino and Kanade 2011, 2013; Lu et al. 2013;
Bellavia et al. 2013 for over 14% in position error and 24% in
orientation error. In fact, the method is also partially used by
the #1 rankedmethodwhich runs visual odometry for motion

1 www.cvlibs.net/datasets/kitti/eval_odometry.php.
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Fig. 21 Sample results using the KITTI benchmark datasets. The
datasets are chosen from three types of environments: urban, country,
and highway from left to right, corresponding to tests number 0, 3, and
1 in Table 5. In a–c, we compare estimated trajectories of the vehicle

to the GPS/INS ground truth. The black dots are starting positions. d–f
show maps corresponding to a–c, color coded by elevation. An image
is shown from each dataset to illustrate the environment, in g–i

Table 5 Configurations and results of the KITTI benchmark datasets

Data no. Configuration Mean relative
position error
(%)

Distance (m) Environment

0 3714 Urban 0.78

1 4268 Highway 1.43

2 5075 Urban + Country 0.92

3 563 Country 0.86

4 397 Country 0.71

5 2223 Urban 0.57

6 1239 Urban 0.65

7 695 Urban 0.63

8 3225 Urban + Country 1.12

9 1717 Urban + Country 0.77

10 919 Urban + Country 0.79

The errors are measured using segments of trajectories at
100, 200, . . . , 800m lengthes based on 3D coordinates, as averaged
percentages of the segment lengthes

estimation and the proposed method for motion refinement
(Zhang and Singh 2015). We think laser-based state esti-
mation is superior than vision-based methods due to the
capability of lidars in measuring far points. The lidar range
errors are relatively constantw.r.t. the distancemeasured, and
points far away from the vehicle ensure orientation accuracy
during scan matching.

8 Discussion

When building a complex system, one question is which
components in the system function as the keys to ensure
the performance. Our first answer is the dual-layer data
processing structure. This allows us to break down the state
estimation problem into two problems that aremuch easier to
solve. Lidar odometry only cares about velocity of the sensor
and motion distortion removal. The velocity estimates from
lidar odometry are not precise (see Fig. 12a) but are good
enough to de-wrap point clouds. After which, lidar mapping
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only needs to consider rigid body transform for precise scan
matching.

Our implementation of geometrical feature detection and
matching is a means to realize online and real-time process-
ing. Particularly in lidar odometry, matching does not have
to be very precise but high-frequency is more important for
point cloud de-wrapping. The implementation takes process-
ing speed as its priority. However, if sufficient amount of
computation is available, e.g. with GPU acceleration, the
implementation is less necessary.

We do have the choice of choosing the frequency ratio
between lidar odometry and lidar mapping. Setting the ratio
to be 10 is our preference (lidarmapping is an order ofmagni-
tude slower than lidar odometry). This means lidar mapping
stacks 10 scan outputs from lidar odometry for one time of
batch optimization. Setting the ratio to be higher will typi-
cally causemore drift. Also, each time lidar mapping finishes
processing, a jumpwill be introduced to themotion estimates.
The ratio is able to keep the motion estimates to be smooth.
On the other hand, setting the ratio to be lower will cause
more computation and is usually not necessary. The ratio also
balances computation load on the two CPU threads. Chang-
ing the ratio will put more computation load on one thread
than the other.

9 Conclusion and future work

Motion estimation and mapping using point clouds from a
rotating laser scanner can be difficult because the problem
involves recovery of motion and correction of motion distor-
tion in lidar clouds. The proposed method divides and solves
the problem by two algorithms running in parallel. Coopera-
tion of the two algorithms allows accurate motion estimation
and mapping to be realized in real-time. The method has
been tested in a large number of experiments covering vari-
ous types of environments, using author collected data aswell
as datasets from the KITTI odometry benchmark. Since the
current method does not recognize loop closure, our future
work involves developing a method to correct motion esti-
mation drift by closing the loop.
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Onboard IMU and Monocular Vision Based Control for MAVs in
Unknown In- and Outdoor Environments

Markus Achtelik, Michael Achtelik, Stephan Weiss, Roland Siegwart

Abstract— In this paper, we present our latest achievements
towards the goal of autonomous flights of an MAV in unknown
environments, only having a monocular camera as exteroceptive
sensor. As MAVs are highly agile, it is not sufficient to directly
use the visual input for position control at the framerates
that can be achieved with small onboard computers. Our
contributions in this work are twofold. First, we present a
solution to overcome the issue of having a low frequent onboard
visual pose update versus the high agility of an MAV. This is
solved by filtering visual information with inputs from inertial
sensors. Second, as our system is based on monocular vision,
we present a solution to estimate the metric visual scale aid of
an air pressure sensor. All computation is running onboard and
is tightly integrated on the MAV to avoid jitter and latencies.
This framework enables stable flights indoors and outdoors
even under windy conditions.

I. INTRODUCTION

The research in autonomous micro helicopters is advanc-
ing and evolving fast. Even though a lot of progress has been
achieved in this topic during the past years, the community
is still striving to achieve simple autonomous flights in
unknown and GPS denied environments. Only after solving
this issue, high level tasks such as autonomous exploration,
swarming, and large trajectory planning can be tackled.

Stable flights and navigation with GPS are well explored
and work out of the box [1]. However, GPS is not a reliable
service as its availability can be limited by urban canyons
and is completely unavailable in indoor environments. The
alternative of using laser range finders is not optimal since
these sensors have a restricted perception distance and are
still heavy for MAVs.

Considering the above mentioned and to be independent
of the (quality of the) GPS signal, a viable solution is to nav-
igate with a vision based system. This ensures operations of
the MAV indoors as well as outdoors. Recently we presented,
to the best of our knowledge, the first vision based solution
for completely autonomous flights in unknown and GPS
denied environments [2]. In that work, the vision algorithms
ran off-board on a ground station transferring the control
commands wireless back to the helicopter. Since wireless
communication is not always reliable, there is a strong need
for computing all tasks of the control framework onboard.

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n. 231855 (sFly). Markus Achtelik and
Stephan Weiss are currently PhD students at the ETH Zurich (email:
{markus.achtelik, stephan.weiss}@mavt.ethz.ch). Roland Siegwart is full
professor at the ETH Zurich and head of the Autonomous Systems Lab
(email: r.siegwart@ieee.org).

Michael Achtelik is CEO of Ascending Technologies GmbH, Germany
(email: michael.achtelik@asctec.de)

Fig. 1. Outdoor autonomous flight using only onboard IMU aided
monocular vision.

In this work, we develop our previous system to an
onboard solution. As exteroceptive sensor, we still use one
single camera because stereo vision loses its effect for
large distances and small baselines. However, we include
the onboard IMU more tightly as in the previous work, to
tackle the issue of low-frequent vision updates. Also, we
added a pressure sensor to estimate the absolute scale of the
visual pose measurements. Finally, we optimized the visual
framework for an embedded solution in order to cope with
the limited calculation power onboard.

II. RELATED WORK

Previous work on position control using visual input has
been done in several ways. Stable flights were shown using
onboard cameras and landmarks placed in the environment
such as blobs or other artificial markers in [3]. However,
these approaches only work in controlled environments
whereas we focus on stable flights without having any prior
information about the environment nor GPS signals. This
was successfully shown in [4] using a lightweight laserscan-
ner and/or cameras in a stereo configuration and off-board
computation. Offloading sensor data to a ground station has
major drawbacks. Not only become delays a significant issue,
but also the high bandwidth datalink has to be granted at
any time. Compressing large data chunks (such as images)
diminishes the issue but introduces artefacts. Furthermore,
in the mentioned approach the stereo camera and the laser
scanner have a limited range of operation.

An alternative approach is to use cameras for the lo-
calization task. However this vast information has to be
processed accordingly. The most simple way is to install
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May 9-13, 2011, Shanghai, China

978-1-61284-385-8/11/$26.00 ©2011 IEEE 3056



a number of external cameras with known location and to
have them track the MAV [5], [6], [7]. This method is very
efficient for testing purposes and can be used to evaluate
other approaches as ground truth reference. However it is not
suitable for missions where the installation of an appropriate
infrastructure is not feasible.

This approach can also be implemented the other way
round: the camera is mounted on the helicopter and tracks
a known pattern on the ground [8]. Hamel et al. [9] imple-
mented a visual servoing based trajectory tracking to control
an UAV with a camera observing n fixed points. Further
methods have also been developed by fusing the visual data
with IMU data [10].

Alternatively, stabilizing controllers can be built by means
of optical flow considerations [11]. Herisse et al. [12] use
an optical flow based PI-controller to stabilize a hovering
MAV. They also implemented an automatic landing routine
by contemplating the divergent optical flow. Hrabar et al. [13]
developed a platform able to navigate through urban canyons.
It was based on the analysis of the optical flow on both
sides of the vehicle. Also, by having a forward looking stereo
camera, they were able to avoid oncoming obstacles. Most
recently, cheap systems sold as toys [14] were presented,
performing stabilization based on optical flow and ultra sonic
height sensors onboard.

An approach with offboard vehicle tracking equipment
was implemented by Ahrens et al. [15]. Based on the
visual SLAM algorithm of Davison et al. [16], they build
a localization and mapping framework that is able to pro-
vide an almost drift-free pose estimation. With that they
implemented a very efficient position controller and obstacle
avoidance framework. However, due to the simplification
they used in their feature tracking algorithm, a non-negligible
drift persists. Also, they used an external Vicon localization
system to control the aerial vehicle with millimeter precision
(a system of external cameras that tracks the 3D pose of the
vehicle). So far, they did not use the output of the visual
SLAM based localization system for controlling the vehicle.

In this paper, we discuss the thorough implementation
of a vision based controller framework onboard a micro
helicopter. Compared to optical flow based approaches that
drift over time, we focus on a solution that enables absolute
position control. Note that we do not claim to have developed
a novel controller. This has already been discussed in previ-
ous work [17], [7]. Rather, we highlight the issues of a full
onboard implementation and their solutions. More precisely,
our contributions are the following. First, we present a frame-
work to tackle the issue of a very slow visual pose update
versus the high agility of the micro helicopter. We solve
this issue with filtering the visual information with inputs
from inertial sensors at 1 kHz onboard the helicopter. This
high frequency also enables us to estimate a reliable speed
information that is crucial for such agile platforms. Since
our visual framework consists of only one single fisheye
camera, our second main contribution is to demonstrate how
to recover the absolute scale of the visual pose estimation.
We do so by filtering the visual pose with an onboard

pressure sensor. The filter also compensates for the pressure
sensor’s drift. Last, we discuss a fast implementation of the
visual framework [18] onboard the micro helicopter.

Our implementation of an onboard monocular vision-
based MAV controller can be used in an unknown environ-
ment without the aid of any infrastructure based localization
system, any beacons, artificial features, or any prior knowl-
edge on the environment. In other words, our platform does
not need any external assistance in order to navigate through
an unexplored region and is not bound to a ground station.
All our implementations are based on the Robot Operating
System (ROS) [19]. This makes our work reusable for the
community and represents as such a valuable contribution
towards the fast development of autonomously flying MAVs.

The remainder of the paper is organized as follows: In
Section III, we describe the platform we used. In Section
IV, we present the algorithm and the implementation of the
system. Experimental results and the evaluation are shown
in Section V. Conclusions are given in Section VI.

III. PLATFORM DESCRIPTION

A. Hardware

The MAV we use is a so-called quadrocopter, a helicopter
driven by for rotors, symmetric to the center of mass. The
control of the quadrocopter is performed solely by changing
the rotation speed of the propellers and is described in more
detail in [20]. For our experiments, we use the “AscTec
Pelican” quadrocopter [1], which is a further development
of the one described in [20]. The quadrocopter is equipped
with rotors with 10” diameter which allow to carry a payload
of about 500 g. Depending on battery size and payload, flight
times between 10 and 20 minutes can be achieved. Further
key features are the Flight Control Unit (FCU) “AscTec
Autopilot” as well as the flexible design enabling one to
easily mount different payloads like computer boards or
cameras. The FCU features a complete Inertial Measurement
Unit (IMU) as well as two 32 Bit, 60 MHz ARM-7 micro-
controllers used for data fusion and flight control. One of
these microcontrollers, the Low Level Processor (LLP) is
responsible for the hardware management and IMU sensor
data fusion. An attitude and GPS-based position controller is
implemented as well on this processor. The LLP is delivered
as a black box with defined interfaces to additional compo-
nents and to the High Level Processor (HLP). To operate
the quadrocopter, only the LLP is necessary. Therefore, the
HLP is dedicated for custom code. All relevant and fused
IMU data is provided at an update rate of 1 kHz via a
highspeed serial interface. In particular, this comprises body
accelerations, body angular velocities, magnetic compass,
height measured by an air pressure sensor and the estimated
attitude of the vehicle.

For the computationally more expensive onboard process-
ing tasks, we outfitted the helicopter with a 1.6 GHz Intel
Atom Based embedded computer, available from [1]. This
computer is equipped with 1 GB RAM, a MicroSD card slot
for the operating system, a 802.11n based miniPCI Express
WiFi card and a Compact Flash slot. The miniPCIE WiFi
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Fig. 2. Overview of the Pelican quadrocopter

card is preferred over USB to keep the USB bus free for
devices like the cameras we use. We furthermore use a
high speed CF-card that allows us data logging with up to
40 MByte/s.

As camera, we use a Point-Grey USB Firefly camera with
a resolution of 752×480 px and a global shutter. The camera
faces the ground with a 150◦ field-of-view lens since we are
expecting the most stable features trackable over longer time
in this configuration.

In this work, a position controller and the position data
fusion algorithms are implemented on the HLP, based on the
vision input from the onboard computer and the inertial data
provided by the LLP. On the LLP, the attitude controller is
used as inner loop. A GPS-based position controller is used
as a fall-back in case of any failures on the HLP during
outdoor experiments.

B. Software

To provide a maximum portability of our code and to
avoid potential (binary) driver issues, we installed Ubuntu
Linux 10.04 on our onboard computer which makes tedious
crosscompiling unnecessary. Since we are running a couple
of different subsystems that need to communicate between
each other, we use the ROS [19] framework as a middleware.
This is also used to communicate to the ground station over
the WiFi datalink for monitoring and control purposes. The
FCU is interfaced via a ROS node communicating over a
serial link to the FCU’s Higlevel Controller with firmware
we developed for our purposes.

Software development on the HLP is done based on a SDK
available for the AutoPilot FCU providing all communication
routines to the LLP and a basic framework. The HLP com-
municates with the ROS framework on the onboard computer
over a serial datalink and a ROS FCU-node handling the
serial communication. This node subscribes to generic ROS
pose messages with covariance, in our case from the vision
framework, and forwards it to the HLP. Moreover, it allows
to monitor the state of the fusion filter and the position
controller, and to adjust their parameters online via the
“dynamic reconfigure” functionality of ROS.

For the implementation of the position control loop and
data fusion onboard the HLP, a Matlab/Simulink framework
is used in combination with the Mathworks Real-Time
Workshop Embedded Coder. The framework provides all
necessary tools to design the control structure in Simulink,
optimize it for fixed point computing, as well as compiling
and flashing the HLP.

IV. ONBOARD VISION BASED POSITION CONTROL

A. Overview

In this section, we describe the essential components that
we used to enable autonomous flights running all compu-
tation onboard. The basic structure can be seen in Fig. 3.
We obtain absolute position estimates by a monocular visual
SLAM (VSLAM) framework and estimate the absolute scale
with the help of an air pressure sensor. Since this process
(approx. 10 Hz) is slow compared to the motion of the MAV,
we fuse this information with inertial sensor data (angular
rates and body acceleration) provided by the IMU at a rate
of 1 kHz. The outputs of that filter are finally fed into a
position controller based on nonlinear dynamic inversion.
While the computationally expensive VLSAM is run on the
Atom onboard computer at approximately 10 Hz, the fusion
filter and the position controller are executed on the HLP
(see Section III-A) at 1 kHz – just when new IMU readings
arrive. This ensures minimum possible delays and allows us
to handle the fast movements and disturbances of the MAV.
The ground station is solely used for monitoring or sending
highlevel commands such as waypoints.

B. Visual framework

The approach presented in this paper uses the visual
SLAM (VSLAM) algorithm of Klein and Murray [18] in
order to localize the MAV with the aid of a single camera

Fig. 3. System overview
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Fig. 4. Screenshot of Klein and Murray’s SLAM algorithm. On the left, the tracking of the FAST corners can be observed, this is used for the localization
of the camera. On the right, the 3D map that was build by the mapping thread is shown. The 3-axis coordinate frames represent the location where new
keyframes where added.

(see Fig. 4). In short, the authors split the simultaneous
localization and mapping task into two separately-scheduled
threads: the tracking thread and the mapping thread. Splitting
the SLAM algorithm into a mapping and a tracking part
brings the advantage that both can run at different speeds.
The tracker can thus yield fast pose updates while the
mapper can use more powerful (slower) map optimization
techniques. Compared to frame-by-frame SLAM the mapper
does not process every camera frame. This eliminates to a
great extend redundant information processing during slow
movements or hovering. Furthermore, it is very easy to
adapt and optimize independently each of the threads to our
specific needs on the flying platform. These are the main
reasons we choose this SLAM algorithm. We describe our
modifications in the following.

As our whole framework uses ROS as middleware, we
modified the VSLAM such that it exports the 6-DOF pose
estimate, the map information and tracking quality as ROS
messages to the HLP over the FCU-node. Similarly, we
modified it to accept initialization and reset commands as
ROS services such that we can remote control the algorithm
from the ground station. Note that only during the VSLAM
initialization phase these commands are sent from the ground
station to the MAV. The VSLAM framework itself runs
completely on the onboard computer.

The tracking part of the VSLAM algorithm is already well
designed for our needs. We set it to use a maximum of 300
features per frame. For successful MAV navigation we only
need our vincinity to be consistent, that is, it is sufficient to
have only a local map well aligned with the gravity vector.
The FCU’s gravity estimate and the air pressure sensor can be
used to compensate for map and scale drifts respectively (see
Section IV-C). More important is that we do not have to store
a global map. In fact only a few keyframes are sufficient for
a local consistent pose estimate. Here, we limit the number
of keyframes retained in the map. When a new keyframe is
requested, the keyframe furthest away in the euclidean space
is deleted. Also, all features corresponding to that keyframe
are removed from the map. This ensures constant speed in
map maintenance since only N keyframes and M features

take part in the nonlinear map refinement. Also, it ensures
constant speed in tracking in already explored areas since
the number of features M is roughly constant.

With these modifications, the VSLAM algorithm runs
approximately at 10 Hz on the onboard computer. The fram-
erate can temporarily drop down to 5 Hz during a nonlinear
map refinement when a new keyframe is added. Of course a
loss of the local map or textureless regions are fatal for the
here presented algorithm. However, failure of the VSLAM
algorithm can be detected. In that case, the data fusion
algorithm from Section IV-D is not updated any more. The
vehicle will then drift away slowly since position information
just relies on integration of acceleration sensors. This still
leaves enough time for a safety pilot to take over control
or for switching back to an alternative localization. Thus
far, we experienced that in outdoor environments we rarely
lack of features. Known difficult scenarios are environments
like self-similar paved roads or uniform indoor floors, while
natural scenes, such as bushes or unpaved roads usually
provide sufficient texture.

C. Scale Estimation

Observe that, because we are using a single camera,
the VSLAM framework can give us only the direction of
translation but not its magnitude, that is, the absolute scale.

To recover the absolute scale—in order to pass proper
position information to the fusion filter—there are basically
two solutions. The first solution consists in measuring the
size of an element in the scene. This quickly gets computa-
tionally infeasible on our setup and is very likely prone to
errors. The other solution is to use additional sensors that
provide absolute measurements. For instance, previous work
has been done with ultrasonic range sensors. This works
well in principle but limits the maximum operating height of
the vehicle which is about 2− 5 m for commonly available
sensors.

Therefore, we use the accelerometers and the air pressure
sensor of the FCU to recover the scale. The pressure sensor
has the advantage of almost unlimited height, but the draw-
backs are drift and noisy measurements. Simply using the
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ratio of the height measured by the air pressure sensor and
the (also noisy) height from VSLAM would lead to inaccu-
rate results. Potential issues with taking measurements from
the air pressure sensor are twofold. First, the zero height of
the pressure sensor does not align with the VSLAM reference
frame. Second, the measurements of the pressure sensor are
drifting over time due to changing weather conditions. We
solve these problems by designing an EKF using the pressure
sensor as well as the accelerometers, and incorporating the
scale and pressure sensor drift in the states.

The state x consists of the absolute height pz , the climb
rate vz , the absolute scale λ and the pressure sensor bias
b. As process input, we chose the acceleration az expressed
in world coordinates. To gain the acceleration a in world
coordinates from the measured body acceleration abody ,
we need to transform it by the attitude R ∈ SO(3) of
the vehicle, estimated by the FCU. Finally, a needs to be
corrected for the gravity.

a =
[
ax ay az

]T
= R · abody −

[
0 0 g

]T
(1)

As measurement z, we chose the height from VSLAM pz,v
and the height measured by the air pressure sensor pz,p. To
summarize:

x =
[
pz vz λ b

]T
z =

[
pz,p pz,v

]T
(2)

The differential equations governing the state are:

ṗz = vz ḃ = nb (3)

v̇z = az + na λ̇ = nλ (4)

The noise na of the acceleration measurement is assumed
to be white gaussian noise. Bias b and scale λ are modeled
as random walks with their derivatives being white gaussian
noise na and nλ respectively. We have two measurements
arriving not synchronized and at different rates, therefore we
need measurement prediction functions hv(x) and hp(x) for
the scaled height measurement pz,v from the vision algorithm
and the absolute height measurement pz,p from the pressure
sensor:

ẑv = hv(x) = pz · λ; z̃v = pz,v − hv(x) (5)
ẑp = hp(x) = pz + b; z̃p = pz,p − hp(x) (6)

State update, Kalman gain and process covariance are finally
computed following the standard EKF scheme. To estimate
the bias properly, motion of the vehicle in the z axis is
required, otherwise the scale will not be correctly estimated.
The performance of the filter will be evaluated in Section V

D. Data Fusion

Fast data fusion algorithms are essential to match the
high bandwidth of the quadrocopter’s system dynamics. The
attitude angles and angular rates of the quadrocopter are
already provided by the LLP at 1 kHz update rate. For
position control, fast data fusion algorithms of all kinematic
measurements are needed. The LLP provides acceleration
measurements at 1 kHz update rate and the vision system
provides position and heading information at 5 − 10 Hz. A

position filter has been developed taking into account the
computational limitations of the microcontroller hardware
where a full state Kalman filter working at an update rate of
at least 500 Hz is not feasible. This high update rate is needed
to enable a high update rate in the position control loop
to match the quadrocopter’s system dynamics. In particular,
the aim of the filter is to combine both the vision and the
acceleration sensor to achieve a fused signal, featuring fast
reactions on disturbances based on the high update rate of the
acceleration sensors and steady state accuracy based on the
vision signal. The filter is designed decoupled for all three
axes x, y, z and works in a global (0-) frame. In the following,
only the filter for the x-axis is described and applies for
the other axes respectively. The body-fixed accelerations are
rotated in the global frame by a simple rotational matrix
based on the attitude angles provided by the LLP, as shown
in (1). The filter is based on a Luenberger observer [21]
with the position px, speed vx, and the acceleration sensor
bias bx as state. The acceleration notated in the global (0-
) frame, separated for each axis, is the system input. The
measurement can be any (absolute) position input, which in
our case is the position pvλ = pv/λ from the VSLAM,
corrected by the scale estimated with the method described
in Section IV-C.

x =
[
px vx bx

]T
u =

[
ax
]T

y =
[
px,vλ

]T
(7)

Again, we use a linear motion model to describe the system.
Since this filter runs at 1 kHz, we consider this as continuous
time system.

˙̂x = A · x̂+L (y − ŷ) +B · u (8)
ŷ = H · x̂ (9)

with:

A =

0 1 0
0 0 1
0 0 0

 B =

0
1
0


H =

[
1 0 0

]
L =

[
L1 L2 L3

]T
The elements of the matrix L are calculated based on
considerations on the eigenvalues of the error dynamics. The
state error is defined as x̃ = x − x̂ and the error dynamics
can be calculated as:

˙̃x = (A−LH) x̃ (10)

We used Simulink and the Mathworks Real-Time Work-
shop Embedded Coder to implement the data fusion filter on
the HLP (see Section III-B). All calculations are optimized
for fixed point arithmetics and unnecessary matrix operations
are dropped. Relevant parameters such as L as well as the
states are connected to communication channels that can be
accessed through ROS messages and services (see Section
III-B) for debugging and parameter changes. In future, it is
planned to use this functionality to extend the observer to a
full state Kalman filter by computing the update step on the
onboard computer to find optimal values for L when a new
measurement arrives.
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In a last step, methods were implemented to reset, hold
and reinitialize the filter’s integrators in case of loss or re-
initialization of the input from VSLAM. The output of this
position filter are position and speed signals. The filter is
able to react fast to disturbances measured by the acceleration
sensors far before it is possible to observe these disturbances
by the visual sensor.

E. Position Controller

For position control, a cascade structure is used. As inner
loop, the well tested attitude loop provided by the LLP
of the FCU is used (see Section III-A). The outer loop is
the position loop, and is implemented on the HLP based
on the concept of nonlinear dynamic inversion. With an
adequate knowledge of the plant dynamics, this control ap-
proach can transform the nonlinear system into an equivalent
linear system without any simplification, through exact state
transformation and suitable control inputs [22]. Based on this
input-output linearization, standard linear control strategies
like PD controllers can be applied. For the quadrocopter
position controller, a control structure of relative degree two
is implemented. That means, position and speed control are
performed in one control loop on the onboard hardware.
Fig. 5 shows the control structure including the rates of the
different parts.

Fig. 5. Structure of the position controller. Subscript 0 denotes coordinates
w.r.t a global frame, B w.r.t the current body frame. The names in braces
denote on which physical device the corresponding part is executed

Input commands of the attitude loop are desired atti-
tude angles roll, pitch and yaw

[
Φ Θ Ψ

]T
des

and the
thrust Tdes commanded by the position loop. Outputs are
the commanded rotational velocities

[
n1 . . . n4

]T
of the

four rotors. This control loop is implemented on the LLP,
delivered with the FCU and is not the focus of this paper.

For the position control loop, the quadrocopter translation
dynamics need to be modeled and inverted. The world
frame (denoted by 0) is used as inertial frame in order to
apply to Newton’s law. Furthermore, the data fusion and
the generation of reference trajectories, as described later,
is performed in this frame. To simplify the inversion, the 0̄-
frame has been introduced as a leveled frame with the same

yaw angle Ψ as a local body frame denoted by B. In a first
step, desired accelerations in the 0-frame can be transformed
into the 0̄-frame by a simple rotation through the azimuth Ψ.
Applying Newton’s second law results in:

m · a0̄ = f 0̄ + fg,0̄ = M 0̄B · fB + fg,0̄ (11)

m denotes the mass of the quadrocopter, a the acceleration
expressed in the 0̄-frame, f the forces on the quadrocopter
in the 0̄-frame and the B-frame respectively, fg the gravi-
tational vector and M 0̄B denotes the transformation matrix
between the 0̄ and B-frame. Solved for the roll angle Φ, the
pitch angle Θ and the thrust T, we get:

T = m ·
√
a2
x + a2

y + (az − g)2 (12)

Φ = arctan
may
T

(13)

Θ = arctan
ax

az − w
(14)

Where g is the gravitational constant. By these equations,
a transformation is given transforming so called pseudo
controls ν = a into the controls of the system Φ, Θ, T .
Therefore, a linear dynamic between the inputs, the position
commands and the pseudo controls is achieved and linear
control methods can be applied.

As only the second time derivatives of the position
commands pc can be commanded as pseudo controls, the
command trajectory needs to be smooth such that its second
time derivative exists. Therefore, linear reference models are
used to generate the reference trajectories pR, computed in
the 0-frame and governed by the following equation:

p̈R = ω2
0 · (pc − pR)− 2ζω0 · ṗR (15)

The reference dynamics can be set by the natural frequency
ω0 and the relative damping ζ. For the controller presented in
this paper, the damping is set to 1 to ensure aperiodic behav-
ior and the natural frequency to 2.5 based on experiments.
The error controller, computing the pseudo controls can now
be designed and is governed by the following equation:

ν = p̈R + (ṗR − ṗ) · kd + (pR − p) · kp (16)

Where p is the filtered position and ṗ the filtered velocity
from Section IV-D. kp, kd are the proportional and differen-
tial gains for the error controller.

At this point, one advantage of the system becomes
obvious: Commanding a step signal for the position, a
trajectory for acceleration, speed and position is computed.
The trajectory for the acceleration is directly commanded
to the vehicle and the trajectories for speed and position are
controlled by the error controller. This results in acceleration
at the beginning with maximum allowed value and slowing
down with exactly the maximum available acceleration as
well. An example of the generated reference trajectories is
shown in Fig. 6

For the implementation, the Simulink framework is used
as well, and all calculations are optimized for fixed-point
arithmetics. Furthermore, limitations are introduced to limit
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Fig. 6. Response of the reference model on an input step, in our case
a change in the desired position. Note that the model outputs a negative
acceleration after t = 2 s to slow the vehicle down in advance in order to
arrive the desired position fast and without overshoot. The acceleration was
limited to 4m/s2

accelerations and attitude angles to reasonable values. A
command filter was also implemented, giving the MAV’s
safety pilot the possibility to steer speed signals in the 0̄-
frame with the sticks of his RC transmitter.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the pre-
sented system, in particular of the scale filter and the position
controller. The indoor experiments were made in the “Flying
Machine Arena” [23] equipped with a Vicon motion captur-
ing system which provided us ground truth with millimeter
resolution at 200 Hz. The outdoor experiments took place
in a small park with grass and stones on the ground which
provided sufficient texture.

The top plots of Fig. 7 show the height estimated by our
filter (blue) compared to the raw measurements of the air
pressure sensor (red) and the raw estimated height from the
VSLAM in “VSLAM-units” (green). The middle plots show
the estimated scale compared to the ratio of the mean height
from the air pressure sensor and from the VSLAM. The
estimated bias to compensate for the drifts of the air pressure
sensor can be seen in the bottom plots. We initialized
the filter with constant parameters at different height to
verify that it still converges under different conditions. We
unfortunately did not have ground truth accurate enough
for these experiments. Therefore, we can only evaluate the
plots qualitatively. What can be observed is that the filter
converges after approximately 1 s. For the pressure sensor
bias, comparable drifts are observable when the vehicle is
left on the ground over the same period of time.

For the position controller, the RMS error while hovering
and the response to external disturbances or step inputs
respectively is of interest. Fig. 8 and Fig. 9 show the
trajectories of in- and outdoor flights. To gain the RMS
error for the outdoor experiments, we computed the mean of
the hovering phases and computed the error relative to this
mean. Obviously, the RMS error outdoor is larger than indoor
which is a result of the higher altitude and the less controlled
environment, but the vehicle is still able to navigate stably.
It can also be observed that the RMS error in the z-axis

Fig. 7. Results of the scale filter for different heights. Top: estimated height
from the filter (blue), raw height from VSLAM (green) and the raw height
from the pressure sensor for comparison (red). Middle: absolute estimated
scale compared to the average scale of the whole flight. Bottom: estimated
sensor bias. Note the different scales on the plots

is significantly smaller than in the x/y-plane as depicted
in Table I. This is because of the controller structure and
dynamics of the MAV. While we can directly command
acceleration in the z-axis through the thrust of the propellers,
commands in the x/y-plane need to go through the attitude
control loop first, and then result in acceleration (see Section
IV-E, Fig. 5).

TABLE I
RMS ERROR WHILE HOVERING

Type RMS error [m] Height [m]
indoor x/y 0.069 1.4
indoor z 0.009 1.4

outdoor x/y 0.44 3.3
outdoor z 0.11 3.3

The left plot of Fig. 10 shows disturbances at t = 6 s
and t = 20 s in the y-axis from pushing the vehicle. Note
that the vehicle directly returns to its desired setpoint within
the RMS with almost no overshoot. This is a result from
the fast data fusion and of the position controller based on
nonlinear dynamic inversion (see also Fig. 6). The middle

Fig. 8. Indoor hovering
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Fig. 9. Outdoor hovering

plot of Fig. 10 shows a longer term disturbance at t = 14 s
by pulling the vehicle and holding it for 3 s. Again, the
vehicle returns directly to the desired setpoint with almost no
overshoot. The disturbances applied in the z-axis on the right
plot of Fig. 10 look rather small. Because of the direct thrust
command as explained above, the helicopter was massively
working against the disturbance. Even though we disturbed
the vehicle with reasonably strong impulses, we did not
manage to deflect it more than 20 cm.

Fig. 10. Short and long disturbances in the y-axis on the left and the
middle. Disturbances in the z-axis on the right. Note the different scale on
the right plot

VI. CONCLUSIONS

We successfully stabilized a highly dynamic aerial vehicle
based on onboard vision computation at a rate of only
10 Hz, data fusion with IMU data and a well designed
implementation. With the frameworks we developed, we are
now able to try out relatively easy new control approaches on
a real working system. This system can perform autonomous
flights in unknown in- and outdoor environments, solely
having a monocular camera as exteroceptive sensor while
all computation is completely running onboard.
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Incremental Sampling-based Algorithms
for Optimal Motion Planning

Sertac Karaman Emilio Frazzoli

Abstract— During the last decade, incremental sampling-based
motion planning algorithms, such as the Rapidly-exploring Ran-
dom Trees (RRTs), have been shown to work well in practice
and to possess theoretical guarantees such as probabilistic com-
pleteness. However, no theoretical bounds on the quality of the
solution obtained by these algorithms, e.g., in terms of a given cost
function, have been established so far. The purpose of this paper
is to fill this gap, by designing efficient incremental sampling-
based algorithms with provable optimality properties. The first
contribution of this paper is a negative result: it is proven that,
under mild technical conditions, the cost of the best path returned
by RRT converges almost surely to a non-optimal value, as
the number of samples increases. Second, a new algorithm is
considered, called the Rapidly-exploring Random Graph (RRG),
and it is shown that the cost of the best path returned by RRG
converges to the optimum almost surely. Third, a tree version of
RRG is introduced, called RRT∗, which preserves the asymptotic
optimality of RRG while maintaining a tree structure like RRT.
The analysis of the new algorithms hinges on novel connections
between sampling-based motion planning algorithms and the
theory of random geometric graphs. In terms of computational
complexity, it is shown that the number of simple operations
required by both the RRG and RRT∗ algorithms is asymptotically
within a constant factor of that required by RRT.

I. INTRODUCTION

Even though modern robots may posses significant differ-
ences in sensing, actuation, size, application, or workspace,
the motion planning problem, i.e., the problem of planning
a dynamically feasible trajectory through a complex environ-
ment cluttered with obstacles, is embedded and essential in
almost all robotics applications. Moreover, this problem has
several applications in other disciplines such as verification,
computational biology, and computer animation [1]–[5].

Motion planning has been a highly active area of research
since the late 1970s. Early approaches to the problem has
mainly focused on the development of complete planners (see,
e.g., [6]), which find a solution if one exists and return failure
otherwise. However, it was established as early as 1979 that
even a most basic version of the motion planning problem,
called the piano mover’s problem, is known to be PSPACE-
hard [7], which strongly suggests that complete planners are
doomed to suffer from computational complexity.

Tractable algorithms approach the motion planning problem
by relaxing the completeness requirement to, for instance,
resolution completeness, which amounts to finding a solution,
if one exists, when the resolution parameter of the algorithm is
set fine enough. Most motion planning methods that are based
on gridding or cell decomposition fall into this category. A
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more recent line of research that has achieved a great success
has focused on the construction of paths connecting randomly-
sampled points. Algorithms such as Probabilistic RoadMaps
(PRM) [8] have been shown to be probabilistically complete,
i.e., such that the probability of finding a solution, if one exists,
approaches one as the number of samples approaches infinity.

The PRM algorithm constructs a graph of feasible paths off-
line, and is primarily aimed at multiple-query applications, in
which several motion-planning problems need to be solved in
the same environment. Incremental sampling-based algorithms
have been developed for single-query, real-time applications;
among the most influential of these, one can mention Rapidly-
exploring Random Trees (RRT) [9], and the algorithm in [10].
These algorithms have been shown to be probabilistically
complete, with an exponential decay of the probability of
failure. Moreover, RRTs were demonstrated in various robotic
platforms in major robotics events (see, e.g., [11]).

A class of incremental sampling-based motion planning al-
gorithms that is worth mentioning at this point is the Rapidly-
exploring Random Graphs (RRGs), which were proposed
in [12] to find feasible trajectories that satisfy specifications
other than the usual “avoid all the obstacles and reach the
goal region”. More generally, RRGs can handle specifica-
tions given in the form of deterministic µ-calculus, which
includes the widely-used Linear Temporal Logic (LTL). RRGs
incrementally build a graph of trajectories, since specifications
given in µ-calculus, in general, require infinite-horizon looping
trajectories, which are not included in trees.

To address the challenges posed by real-time applications,
state-of-the-art motion planning algorithms, such as RRTs, are
tailored to return a feasible solution quickly, paying almost
no attention to the “quality” of the solution. On the other
hand, in typical implementations [11], the algorithm is not
terminated as soon as the first feasible solution is found; rather,
all the available computation time is used to search for an
improved solution, with respect to a performance metric such
as time, path length, fuel consumption, etc. A shortcoming of
this approach is that there is no guarantee that the computation
will eventually converge to optimal trajectories. In fact, despite
the clear practical need, there has been little progress in
characterizing optimality properties of sampling-based motion
planning algorithms, even though the importance of these
problems was emphasized in early seminal papers such as [9].

Yet, the importance of the quality of the solution returned by
the planners has been noticed, in particular, from the point of
view of incremental sampling-based motion planning. In [13],
Urmson and Simmons have proposed heuristics to bias the
tree growth in the RRT towards those regions that result in
low-cost solutions. They have also shown experimental results



evaluating the performance of different heuristics in terms of
the quality of the solution returned. In [14], Ferguson and
Stentz have considered running the RRT algorithm multiple
times in order to progressively improve the quality of the
solution. They showed that each run of the algorithm results
in a path with smaller cost, even though the procedure is not
guaranteed to converge to an optimal solution.

To the best of the authors’ knowledge, this paper provides
the first thorough analysis of optimality properties of incre-
mental sampling-based motion planning algorithms. In partic-
ular, it is shown that the probability that the RRT converges
to an optimal solution, as the number of samples approaches
infinity, is zero under some reasonable technical assumptions.
In fact, the RRT algorithm almost always converges to a non-
optimal solution. Second, it is shown that the probability of
the same event for the RRG algorithm is one. That is, the
RRG algorithm is asymptotically optimal, in the sense that it
converges to an optimal solution almost surely as the number
of samples approaches infinity. Third, a novel variant of the
RRG algorithm is introduced, called RRT∗, which inherits the
asymptotic optimality of the RRG algorithm while maintaining
a tree structure. To do so, the RRT∗ algorithm essentially
“rewires” the tree as it discovers new lower-cost paths reaching
the nodes that are already in the tree. Finally, it is shown
that the asymptotic computational complexity of the RRG and
RRT∗ algorithms is essentially the same as that of RRTs.

To the authors’ knowledge, the algorithms considered in
this paper are the first computationally efficient incremental
sampling-based motion planning algorithms with asymptotic
optimality guarantees. Indeed, the results in this paper imply
that these algorithms are optimal also from an asymptotic
computational complexity point of view, since they closely
match lower bounds for computing nearest neighbors. The
key insight is that connections between vertices in the graph
should be sought within balls whose radius vanishes with a
certain rate as the size of the graph increases, and is based on
new connections between motion planning and the theory of
random geometric graphs [15], [16].

The paper is organized as follows. Section II lays the ground
in terms of notation and problem formulation. Section III is
devoted to the introduction of the RRT and RRG algorithms.
In Section IV, these algorithms are analyzed in terms of
probabilistic completeness, asymptotic optimality, and com-
putational complexity. The RRT∗ algorithm is presented in
Section V, where it is shown that RRT∗ inherits the theoretical
guarantees of the RRG algorithm. Experimental results are
presented and discussed in Section VI. Concluding remarks
and directions for future work are given in Section VII.

Due to space limitations, results are stated without formal
proofs. An extended version of this paper, including proofs
of the major results, technical discussions, and extensive
experimental results, is available [17]. An implementation
of the RRT∗ algorithm in the C language is available at
http://ares.lids.mit.edu/software.

The focus of this paper is on the basic problem of navigating
through a connected bounded subset of a d-dimensional Eu-
clidean space. However, the proposed algorithms also extend
to systems with differential constraints, as shown in [18].

II. PRELIMINARY MATERIAL

A. Notation
A sequence on a set A, denoted as {ai}i∈N, is a mapping

from N to A with i 7→ ai. Given a, b ∈ R, the closed interval
between a and b is denoted by [a, b]. The Euclidean norm is
denoted by ‖ · ‖. Given a set X ⊂ Rd, the closure of X is
denoted by cl(X), the Lebesgue measure of X , i.e., its volume,
is denoted by µ(X). The closed ball of radius r > 0 centered
at x ∈ Rd is defined as Bx,r := {y ∈ Rd | ‖y − x‖ ≤ r}. The
volume of the unit ball in Rd is denoted by ζd.

Given a set X ⊂ Rd, and a scalar s ≥ 0, a path in X is a
continuous function σ : [0, s] → X , where s is the length of
the path defined in the usual way. Given two paths in X , σ1 :
[0, s1]→ X , and σ2 : [0, s2]→ X , with σ1(s1) = σ2(0), their
concatenation is denoted by σ1|σ2, i.e., σ = σ1|σ2 : [0, s1 +
s2] → X with σ(s) = σ1(s) for all s ∈ [0, s1], and σ(s) =
σ2(s− s1) for all s ∈ [s1, s1 + s2]. The set of all paths in X
with nonzero length is denoted by ΣX . The straight continuous
path between x1, x2 ∈ Rd is denoted by Line(x1, x2).

Let (Ω,F ,P) be a probability space. A random variable is a
measurable function from Ω to R; an extended random variable
can also take the values ±∞. A sequence {Yi}i∈N of random
variables is said to converge surely to a random variable Y if
limi→∞ Yi(ω) = Y(ω) for all ω ∈ Ω; the sequence is said to
converge almost-surely if P({limi→∞ Yi = Y}) = 1.

B. Problem Formulation
In this section, two variants of the path planning problem

are presented. First, the feasibility problem in path planning
is formalized, then the optimality problem is introduced.

Let X be a bounded connected open subset of Rd, where
d ∈ N, d ≥ 2. Let Xobs and Xgoal, called the obstacle region
and the goal region, respectively, be open subsets of X . Let
us denote the obstacle-free space, i.e., X \Xobs, as Xfree. Let
the initial state, xinit, be an element of Xfree. In the sequel, a
path in Xfree is said to be a collision-free path. A collision-free
path that starts at xinit and ends in the goal region is said to
be a feasible path, i.e., a collision-free path σ : [0, s]→ Xfree

is feasible if and only if σ(0) = xinit and σ(s) ∈ Xgoal.
The feasibility problem of path planning is to find a feasible

path, if one exists, and report failure otherwise.

Problem 1 (Feasible planning) Given a bounded connected
open set X ⊂ Rd, an obstacle space Xobs ⊂ X , an initial
state xinit ∈ Xfree, and a goal region Xgoal ⊂ Xfree, find a
path σ : [0, s] → Xfree such that σ(0) = xinit and σ(s) ∈
Xgoal, if one exists. If no such path exists, then report failure.

Let c : ΣXfree
→ R>0 be a function, called the cost function,

which assigns a non-negative cost to all nontrivial collision-
free paths. The optimality problem of path planning asks for
finding a feasible path with minimal cost.

Problem 2 (Optimal planning) Given a bounded connected
open set X , an obstacle space Xobs, an initial state xinit, and
a goal region Xgoal, find a path σ∗ : [0, s] → cl(Xfree) such
that (i) σ∗(0) = xinit and σ∗(s) ∈ Xgoal, and (ii) c(σ∗) =
minσ∈Σcl(Xfree)

c(σ). If no such path exists, then report failure.



III. ALGORITHMS

In this section, two incremental sampling-based motion
planning algorithms, namely the RRT and the RRG algorithms,
are introduced. Before formalizing the algorithms, let us note
the primitive procedures that they rely on.

Sampling: The function Sample : N → Xfree returns
independent identically distributed (i.i.d.) samples from Xfree.

Steering: Given two points x, y ∈ X , the function Steer :
(x, y) 7→ z returns a point z ∈ Rd such that z is “closer” to y
than x is. Throughout the paper, the point z returned by the
function Steer will be such that z minimizes ‖z − y‖ while
at the same time maintaining ‖z − x‖ ≤ η, for a prespecified
η > 0, i.e., Steer(x, y) = argminz∈Rd,‖z−x‖≤η‖z − y‖.

Nearest Neighbor: Given a graph G = (V,E) and a point
x ∈ Xfree , the function Nearest : (G, x) 7→ v returns
a vertex v ∈ V that is “closest” to x in terms of a given
distance function. In this paper, we will use Euclidean distance
(see, e.g., [9] for alternative choices), i.e., Nearest(G =
(V,E), x) = argminv∈V ‖x− v‖.

Near Vertices: Given a graph G = (V,E), a point x ∈ Xfree,
and a number n ∈ N, the function Near : (G, x, n) 7→
V ′ returns a set V ′ of vertices such that V ′ ⊆ V . The
Near procedure can be thought of as a generalization of
the nearest neighbor procedure in the sense that the former
returns a collection of vertices that are close to x, whereas
the latter returns only one such vertex that is the closest.
Just like the Nearest procedure, there are many ways to
define the Near procedure, each of which leads to different
algorithmic properties. For technical reasons to become clear
later, we define Near(G, x, n) to be the set of all vertices
within the closed ball of radius rn centered at x, where

rn = min

{(
γ
ζd

logn
n

)1/d

, η

}
, and γ is a constant. Hence,

the volume of this ball is min{γ logn
n , ζd η

d}.
Collision Test: Given two points x, x′ ∈ Xfree, the Boolean

function ObstacleFree(x, x′) returns True iff the line seg-
ment between x and x′ lies in Xfree, i.e., [x, x′] ⊂ Xfree.

Both the RRT and the RRG algorithms are similar to most
other incremental sampling-based planning algorithms (see
Algorithm 1). Initially, the algorithms start with the graph that
includes the initial state as its single vertex and no edges; then,
they incrementally grow a graph on Xfree by sampling a state
xrand from Xfree at random and extending the graph towards
xrand. In the sequel, every such step of sampling followed
by extensions (Lines 2-5 of Algorithm 1) is called a single
iteration of the incremental sampling-based algorithm.

Hence, the body of both algorithms, given in Algorithm 1, is
the same. However, RRGs and RRTs differ in the choice of the
vertices to be extended. The Extend procedures for the RRT
and the RRG algorithms are provided in Algorithms 2 and 3,
respectively. Informally speaking, the RRT algorithm extends
the nearest vertex towards the sample. The RRG algorithm first
extends the nearest vertex, and if such extension is successful,
it also extends all the vertices returned by the Near procedure,
producing a graph in general. In both cases, all the extensions
resulting in collision-free trajectories are added to the graph
as edges, and their terminal points as new vertices.

Algorithm 1: Body of RRT and RRG Algorithms
1 V ← {xinit}; E ← ∅; i← 0;
2 while i < N do
3 G← (V,E);
4 xrand ← Sample(i); i← i+ 1;
5 (V,E)← Extend(G, xrand);

Algorithm 2: ExtendRRT (G, x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 xnew ← Steer(xnearest, x);
4 if ObstacleFree(xnearest, xnew) then
5 V ′ ← V ′ ∪ {xnew};
6 E′ ← E′ ∪ {(xnearest, xnew)};
7 return G′ = (V ′, E′)

IV. ANALYSIS

A. Convergence to a Feasible Solution

In this section, the feasibility problem is considered. It is
proven that the RRG algorithm inherits the probabilistic com-
pleteness as well as the exponential decay of the probability
of failure (as the number of samples increase) from the RRT.
These results imply that the RRT and RRG algorithms have
the same performance in producing a solution to the feasibility
problem as the number of samples increase.

Sets of vertices and edges of the graphs maintained by the
RRT and the RRG algorithms can be defined as functions from
the sample space Ω to appropriate sets. More precisely, let
{VRRT

i }i∈N and {VRRG
i }i∈N, sequences of functions defined

from Ω into finite subsets of Xfree, be the sets of vertices in the
RRT and the RRG, respectively, at the end of iteration i. By
convention, we define VRRT

0 = VRRG
0 = {xinit}. Similarly,

let ERRT
i and ERRG

i , defined for all i ∈ N, denote the set of
edges in the RRT and the RRG, respectively, at the end of
iteration i. Clearly, ERRT

0 = ERRG
0 = ∅.

An important lemma used for proving the equivalency
between the RRT and the RRG algorithms is the following.

Lemma 3 For all i ∈ N and all ω ∈ Ω, VRRT
i (ω) =

VRRG
i (ω) and ERRT

i (ω) ⊆ ERRG
i (ω).

Lemma 3 implies that the paths discovered by the RRT

Algorithm 3: ExtendRRG(G, x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 xnew ← Steer(xnearest, x);
4 if ObstacleFree(xnearest, xnew) then
5 V ′ ← V ′ ∪ {xnew};
6 E′ ← E′ ∪ {(xnearest, xnew), (xnew, xnearest)};
7 Xnear ← Near(G, xnew, |V |);
8 for all xnear ∈ Xnear do
9 if ObstacleFree(xnew, xnear) then

10 E′ ← E′ ∪ {(xnear, xnew), (xnew, xnear)};

11 return G′ = (V ′, E′)



algorithm by the end of iteration i is, essentially, a subset of
those discovered by the RRG by the end of the same iteration.

An algorithm addressing Problem 1 is said to be proba-
bilistically complete if it finds a feasible path with probability
approaching one as the number of iterations approaches infin-
ity. Note that there exists a collision-free path starting from
xinit to any vertex in the tree maintained by the RRT, since
the RRT maintains a connected graph on Xfree that necessarily
includes xinit. Using this fact, the probabilistic completeness
property of the RRT is stated alternatively as follows.

Theorem 4 (see [9]) If there exists a feasible solution to
Problem 1, then limi→∞ P

({
VRRT
i ∩Xgoal 6= ∅

})
= 1.

An attraction sequence [9] is defined as a finite sequence
A = {A1, A2, . . . , Ak} of sets as follows: (i) A0 = {xinit},
and (ii) for each set Ai, there exists a set Bi, called the basin
such that for any x ∈ Ai−1, y ∈ Ai, and z ∈ X \ Bi, there
holds ‖x − y‖ ≤ ‖x − z‖ Given an attraction sequence A of
length k, let pk denote mini∈{1,2,...,k}

(
µ(Ai)
µ(Xfree)

)
.

The following theorem states that the probability that the
RRT algorithm fails to return a solution, when one exists,
decays to zero exponentially fast.

Theorem 5 (see [9]) If there exists an attraction sequence A
of length k, then P

({
VRRT
i ∩Xgoal = ∅

})
≤ e− 1

2 (i pk−2k).

With Lemma 3 and Theorems 4 and 5, the following
theorem is immediate.
Theorem 6 If there exists a feasible solution to Prob-
lem 1, then limi→∞ P

({
VRRG
i ∩Xgoal 6= ∅

})
= 1. More-

over, if an attraction sequence A of length k exists, then
P
({
VRRG
i ∩Xgoal = ∅

})
≤ e− 1

2 (i pk−2 k).

B. Asymptotic Optimality
This section is devoted to the investigation of optimality

properties of the RRT and the RRG algorithms. First, un-
der some mild technical assumptions, it is shown that the
probability that the RRT converges to an optimal solution
is zero. However, the convergence of this random variable is
guaranteed, which implies that the RRT converges to a non-
optimal solution with probability one. On the contrary, it is
subsequently shown that the RRG algorithm converges to an
optimal solution almost-surely.

Let {YRRT
i }i∈N be a sequence of extended random variables

that denote the cost of a minimum-cost path contained within
the tree maintained by the RRT algorithm at the end of
iteration i. The extended random variable YRRG

i is defined
similarly. Let c∗ denote the cost of a minimum-cost path in
cl(Xfree), i.e., the cost of a path that solves Problem 2.

Let us note that the limits of these two extended random
variable sequences as i approaches infinity exist. More for-
mally, notice that YRRT

i+1 (ω) ≤ YRRT
i (ω) holds for all i ∈ N

and all ω ∈ Ω. Moreover, YRRT
i (ω) ≥ c∗ for all i ∈ N

and all ω ∈ Ω, by optimality of c∗. Hence, {YRRT
i }i∈N is

a surely non-increasing sequence of random variables that is
surely lower-bounded by c∗. Thus, for all ω ∈ Ω, the limit
limi→∞ YRRT

i (ω) exists. The same argument also holds for
the sequence {YRRG

i }i∈N.

1) Almost Sure Nonoptimality of the RRT: Let Σ∗ denote
the set of all optimal paths, i.e., the set of all paths that solve
Problem 2, and Xopt denote the set of states that an optimal
path in Σ∗ passes through, i.e., Xopt = ∪σ∗∈Σ∗ ∪τ∈[0,s∗]

{σ∗(τ)}. Consider the following assumptions.

Assumption 7 (Zero-measure Optimal Paths) The set of
all points in the state-space that an optimal trajectory passes
through has measure zero, i.e., µ (Xopt) = 0.

Assumption 8 (Sampling Procedure) The sampling proce-
dure is such that the samples {Sample(i)}i∈N are drawn
from an absolutely continuous distribution with a continuous
density function f(x) bounded away from zero on Xfree.

Assumption 9 (Monotonicity of the Cost Function) For
all σ1, σ2 ∈ ΣXfree

, the cost function c satisfies the following:
c(σ1) ≤ c(σ1|σ2).

Assumption 7 rules out trivial cases, in which the RRT
algorithm can sample exactly an optimal path with non-
zero probability. Assumption 8 also ensures that the sampling
procedure can not be tuned to construct the optimal path
exactly. Finally, Assumption 9 merely states that extending
a path to produce a longer path can not decrease its cost.

Recall that d denotes the dimensionality of the state space.
The negative result of this section is formalized as follows.

Theorem 10 Let Assumptions 7, 8, and 9 hold. Then, the
probability that the cost of the minimum-cost path in the RRT
converges to the optimal cost is zero, i.e.,

P
({

lim
i→∞

YRRT
i = c∗

})
= 0,

whenever d ≥ 2.

The key idea in proving this result is that the probability of
extending a node on an optimal path (e.g., the root node) goes
to zero very quickly, in such a way that any such node will
only have a finite number of children, almost surely. Because
of Assumptions 7 and 8, this implies the result.

As noted before, the limit limi→∞ YRRT
i (ω) exists and is

a random variable. However, Theorem 10 directly implies
that this limit is strictly greater than c∗ with probability one,
i.e., P

(
{limi→∞ YRRT

i > c∗}
)

= 1. In other words, it is
established, as a corollary, that the RRT algorithm converges
to a nonoptimal solution with probability one.

It is interesting to note that, since the cost of the best path
returned by the RRT algorithm converges to a random variable,
say YRRT

∞ , Theorem 10 provides new insight explaining the
effectiveness of approaches as in [14]. In fact, running multiple
instances of the RRT algorithm amounts to drawing multiple
samples of YRRT∞ .

2) Almost Sure Optimality of the RRG: Consider the fol-
lowing set of assumptions, which will be required to show the
asymptotic optimality of the RRG.

Assumption 11 (Additivity of the Cost Function) For all
σ1, σ2 ∈ ΣXfree

, the cost function c satisfies the following:
c(σ1|σ2) = c(σ1) + c(σ2).



Assumption 12 (Continuity of the Cost Function) The
cost function c is Lipschitz continuous in the following
sense: there exists some constant κ such that for any two
paths σ1 : [0, s1] → Xfree and σ2 : [0, s2] → Xfree,
|c(σ1)− c(σ2)| ≤ κ supτ∈[0,1] ‖σ1(τ s1)− σ2(τ s2)‖.

Assumption 13 (Obstacle Spacing) There exists a constant
δ ∈ R+ such that for any point x ∈ Xfree, there exists x′ ∈
Xfree, such that (i) the δ-ball centered at x′ lies inside Xfree,
i.e., Bx′,δ ⊂ Xfree, and (ii) x lies inside the δ-ball centered at
x′, i.e., x ∈ Bx′,δ .

Assumption 12 ensures that two paths that are very close
to each other have similar costs. Let us note that several cost
functions of practical interest satisfy Assumptions 11 and 12.
Assumption 13 is a rather technical assumption, which ensures
existence of some free space around the optimal trajectories
to allow convergence. For simplicity, it is assumed that the
sampling is uniform, although the results can be directly
extended to more general sampling procedures.

Recall that d is the dimensionality of the state-space X ,
and γ is the constant defined in the Near procedure. The
positive result that states the asymptotic optimality of the RRG
algorithm can be formalized as follows.

Theorem 14 Let Assumptions 11, 12, and 13 hold, and as-
sume that Problem 1 admits a feasible solution. Then, the cost
of the minimum-cost path in the RRG converges to the optimal
cost almost-surely, i.e.,

P
({

lim
i→∞

YRRG
i = c∗

})
= 1,

whenever d ≥ 2 and γ > γL := 2d(1 + 1/d)µ(Xfree).

This result relies on the fact that a random geometric graph
with n vertices formed by connecting each vertex with vertices
within a distance of dn = γ′ (log n /n)

1/d will result in a
connected graph almost surely as n → ∞, whenever γ′ is
larger than a certain lower bound γ1 [19]. In fact, the bound
on γ′ is a tight threshold in the sense that there exists an
upper bound γ2 < γ1 such that, if γ′ < γ2, then the resulting
graph will be disconnected almost surely [19]. This result
strongly suggests that shrinking the ball in the Near procedure
faster than the rate proposed will not yield an asymptotically
optimal algorithm. The authors have experienced this fact in
simulation studies: setting γ to around one third of γL does
not seem to provide the asymptotic optimality property. On
the other hand, as it will be shown in the next section, if
the size of the same ball is reduced slower than the proposed
rate, then the asymptotic complexity of the resulting algorithm
will not be the same as the RRT. Hence, scaling rn with
(log n /n)

1/d in the Near procedure, surprisingly, achieves
the perfect balance between asymptotic optimality and low
computational complexity, since relevant results in the theory
of random geometric graphs and lower bounds on nearest
neighbor computation strongly suggest that a different rate will
lose either the former or the latter while failing to provide an
extra benefit in any of the two.

C. Computational Complexity

The objective of this section is to compare the computational
complexity of RRTs and RRGs. It is shown that these algo-
rithms share essentially the same asymptotic computational
complexity in terms of the number of calls to simple opera-
tions such as comparisons, additions, and multiplications.

Consider first the computational complexity of the RRT and
the RRG algorithms in terms of the number of calls to the
primitive procedures introduced in Section III. Notice that, in
every iteration, the number of calls to Sample, Steer, and
Nearest procedures are the same in both algorithms. How-
ever, number of calls to Near and ObstacleFree procedures
differ: the former is never called by the RRT and is called at
most once by the RRG, whereas the latter is called exactly
once by the RRT and at least once by the RRG.

Let ORRG
i be a random variable that denotes the number of

calls to the ObstacleFree procedure by the RRG algorithm in
iteration i. Notice that, as an immediate corollary of Lemma 3,
the number of vertices in the RRT and RRG algorithms is the
same at any given iteration. Let Ni be the number of vertices
in these algorithms at the end of iteration i. The following
theorem establishes that the expected number of calls to the
ObstacleFree procedure in iteration i by the RRG algorithm
scales logarithmically with the number of vertices in the graph
as i approaches infinity.

Lemma 15 In the limit as i approaches infinity, the random
variable ORRG

i / log(Ni) is no more than a constant in expec-
tation, i.e., lim supi→∞ E

[
ORRG

i

log(Ni)

]
≤ φ, where φ ∈ R>0 is a

constant that depends only on the problem instance.

However, some primitive procedures clearly take more
computation time to execute than others. For a meaningful
comparison, one should also evaluate the time required to
execute each primitive procedure in terms of the number of
simple operations (also called steps) that they perform. This
analysis shows that the expected number of simple operations
performed by the RRG is asymptotically within a constant
factor of that performed by the RRT, which establishes that
the RRT and the RRG algorithms have the same asymptotic
computational complexity in terms of the number of steps that
they perform.

First, notice that Sample, Steer, and ObstacleFree pro-
cedures can be performed in a constant number of steps, i.e.,
independent of the number of vertices in the graph.

Second, consider the computational complexity of the
Nearest procedure. The problem of finding a nearest neighbor
is widely studied, e.g., in the computer graphics literature.
Even though algorithms that achieve sub-linear time complex-
ity are known [20], lower bounds suggest that nearest neighbor
computation requires at least logarithmic time [21]. In fact,
assuming that the Nearest procedure computes an approxi-
mate nearest neighbor (see, e.g., [21] for a formal definition)
using the algorithm given in [21], which is optimal in fixed
dimensions from a computational complexity point of view
closely matching a lower bound for tree-based algorithms, the
Nearest algorithm has to run in Ω(log n) time as formalized
in the following lemma.



LetMRRT
i be the random variable that denotes the number

of steps executed by the RRT algorithm in iteration i.

Lemma 16 Assuming that Nearest is implemented using the
algorithm given in [21], which is computationally optimal
in fixed dimensions, the number of steps executed by the
RRT algorithm at each iteration is at least order log(Ni) in
expectation in the limit, i.e., there exists a constant φRRT ∈
R>0 such that lim infi→∞ E

[
MRRT

i

log(Ni)

]
≥ φRRT .

Likewise, problems similar to that solved by the Near

procedure are also widely studied in the literature, generally
under the name of range search problems, as they have many
applications in, for instance, computer graphics [20].

Similar to the nearest neighbor search, computing approxi-
mate solutions to the range search problem is computationally
easier. A range search algorithm is said to be ε-approximate
if it returns all vertices that reside in the ball of size rn and
no vertices outside a ball of radius (1 + ε) rn, but may or
may not return the vertices that lie outside the former ball
and inside the latter ball. In fixed dimensions, computing ε-
approximate solutions can, in fact, be done in logarithmic time
using polynomial space, in the worst case [22].

Note that the Near procedure can be implemented as an
approximate range search while maintaining the asymptotic
optimality guarantee. Notice that the expected number of
vertices returned by the Near procedure also does not change,
except by a constant factor. Hence, the Near procedure can be
implemented to run in order log n expected time in the limit
and linear space in fixed dimensions.

Let MRRG
i denote the number of steps performed by the

RRG algorithm in iteration i. Then, together with Lemma 15,
the discussion above implies the following lemma.

Lemma 17 Assuming that the Near procedure is implemented
using the algorithm given in [22], the number of steps executed
by the RRG algorithm at each iteration is at most order
log(Ni) in expectation in the limit, i.e., there exists a constant
φRRG ∈ R>0 such that lim supi→∞ E

[
MRRG

i

log(Ni)

]
≤ φRRG.

Finally, by Lemmas 16 and 17, we conclude that the
RRT and the RRG algorithms have the same asymptotic
computational complexity as stated in the following theorem.

Theorem 18 Under the assumptions of Lemmas 16 and 17,
there exists a constant φ ∈ R>0 such that

lim sup
i→∞

E
[
MRRG

i

MRRT
i

]
≤ φ.

V. A TREE VERSION OF THE RRG ALGORITHM

Maintaining a tree structure rather than a graph may be ad-
vantageous in some applications, due to, for instance, relatively
easy extensions to motion planning problems with differential
constraints, or to cope with modeling errors. The RRG algo-
rithm can also be slightly modified to maintain a tree structure,
while preserving the asymptotic optimality properties as well
the computational efficiency. In this section a tree version of
the RRG algorithm, called RRT∗, is introduced and analyzed.

A. The RRT∗ Algorithm

Given two points x, x′ ∈ Xfree, recall that Line(x, x′) :
[0, s]→ Xfree denotes the path defined by σ(τ) = τx+ (s−
τ)x′ for all τ ∈ [0, s], where s = ‖x′ − x‖. Given a tree
G = (V,E) and a vertex v ∈ V , let Parent be a function
that maps v to the unique vertex v′ ∈ V such that (v′, v) ∈ E.

The RRT∗ algorithm differs from the RRT and the RRG
algorithms only in the way that it handles the Extend pro-
cedure. The body of the RRT∗ algorithm is presented in
Algorithm 1 and the Extend procedure for the RRT∗ is given
in Algorithm 4. In the description of the RRT∗ algorithm, the
cost of the unique path from xinit to a vertex v ∈ V is denoted
by Cost(v). Initially, Cost(xinit) is set to zero.

Algorithm 4: ExtendRRT∗(G, x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 xnew ← Steer(xnearest, x);
4 if ObstacleFree(xnearest, xnew) then
5 V ′ ← V ′ ∪ {xnew};
6 xmin ← xnearest;
7 Xnear ← Near(G, xnew, |V |);
8 for all xnear ∈ Xnear do
9 if ObstacleFree(xnear, xnew) then

10 c′ ← Cost(xnear) + c(Line(xnear, xnew));
11 if c′ < Cost(xnew) then
12 xmin ← xnear;

13 E′ ← E′ ∪ {(xmin, xnew)};
14 for all xnear ∈ Xnear \ {xmin} do
15 if ObstacleFree(xnew, xnear) and

Cost(xnear) > Cost(xnew) + c(Line(xnew, xnear))
then

16 xparent ← Parent(xnear);
17 E′ ← E′ \ {(xparent, xnear)};

E′ ← E′ ∪ {(xnew, xnear)};

18 return G′ = (V ′, E′)

Similar to the RRT and RRG, the RRT∗ algorithm first
extends the nearest neighbor towards the sample (Lines 2-3).
However, it connects the new vertex, xnew, to the vertex that
incurs the minimum accumulated cost up until xnew and lies
within the set Xnear of vertices returned by the Near procedure
(Lines 6-13). RRT∗ also extends the new vertex to the vertices
in Xnear in order to “rewire” the vertices that can be accessed
through xnew with smaller cost (Lines 14-17).

B. Convergence to a Feasible Solution

For all i ∈ N, let VRRT∗

i and ERRT∗

i denote the set of
vertices and the set of edges of the graph maintained by the
RRT∗ algorithm, at the end of iteration i. The following lemma
is the equivalent of Lemma 3.

Lemma 19 For all i ∈ N and all ω ∈ Ω, VRRT∗

i (ω) =
VRRG
i (ω), and ERRT∗

i (ω) ⊆ ERRG
i (ω).

From Lemma 19 and Theorem 6, the following theorem, which
asserts the probabilistic completeness and the exponential de-
cay of failure probability of the RRT∗ algorithm, is immediate.



Theorem 20 If there exists a feasible solution to Prob-
lem 1, then limi→∞ P

({
VRRT∗

i ∩Xgoal 6= ∅
})

= 1. More-
over, if an attraction sequence A of length k exists, then
P
({
VRRT∗

i ∩Xgoal = ∅
})
≤ e− 1

2 (i pk−2 k).

C. Asymptotic Optimality

Let YRRT∗

i be a random variable that denotes the cost of
a minimum cost path in the tree maintained by the RRT∗

algorithm, at the end of iteration i. The following theorem
ensures the asymptotic optimality of the RRT∗ algorithm.

Theorem 21 Let Assumptions 11, 12, and 13 hold. Then, the
cost of the minimum cost path in the RRT∗ converges to c∗

almost surely, i.e., P
(
{limi→∞ YRRT∗

i = c∗}
)

= 1.

D. Computational Complexity

LetMRRT∗

i be the number of steps performed by the RRT∗

algorithm in iteration i. The following theorem follows from
Lemma 19 and Theorem 18.

Theorem 22 Under the assumptions of Theorem 18, there
exists a constant φ such that lim supi→∞ E

[
MRRT∗

i

MRRT
i

]
≤ φ.

VI. SIMULATIONS

This section presents simulation examples. A thorough
simulation study of the algorithms can be found in [17].

The RRT and the RRT∗ algorithms are run in a square
environment with obstacles and the cost function is set to the
Euclidean path length. The trees maintained by the algorithms
at different stages are shown in Figure 1. The figure illustrates
that the RRT algorithm does not considerably improve the
solution, whereas the RRT∗ algorithm converges towards an
optimal solution by finding a feasible solution of the homotopy
class that the optimal path lies in. An important difference
between the RRT and the RRT∗ algorithms is the ability of
the latter to efficiently consider different homotopy classes.
Thus, in an environment cluttered with obstacles, the cost
of first feasible solution found by the RRT or the RRT∗

algorithms can be drastically higher than the optimal cost.
Although the RRT∗ algorithm efficiently improves the solution
over time, the RRT algorithm tends to get stuck with the first
solution found. In fact, Monte-Carlo runs of both algorithms,
as shown in Figure 2.(a)-(b), illustrate that generally the
RRT does not improve the first solution found, whereas the
RRT∗ algorithm improves the solution significantly within
the first few thousand iterations, for this particular scenario.
Moreover, the cost of the best path in RRT seems to have
high variance, while after a few thousand iterations the costs
of the best path in the RRT∗ is almost the same in all runs, as
expected from the theoretical results presented in the previous
sections. Finally, the relative complexity of the two algorithms
is demonstrated in Monte-Carlo runs in Figure 2.(c). Notice
that the ratio of the running time of the algorithms up until
a certain iteration converges to a constant as the number of
iterations increases. Note that the convergence to this constant
is achieved when the free space is “fully explored”, i.e., almost

uniformly filled with the nodes of the trees. However, before
then the complexity of the RRT∗ is much lower than the
complexity in the limit value. In fact, the average amount
of time that the RRT∗ algorithm takes for finding a feasible
solution was found to be no more than five times that of the
RRT, in this particular scenario. Moreover, the first solution
found by the RRT∗ generally costs considerably less than that
found by the RRT.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the results of a thorough analysis of
the RRT and RRG algorithms for optimal motion planning. It
is shown that, as the number of samples increases, the RRT
algorithm converges to a sub-optimal solution almost surely.
On the other hand, it is proven that the RRG algorithm has the
asymptotic optimality property, i.e., almost sure convergence
to an optimal solution, which the RRT algorithm lacked. The
paper also proposed a novel algorithm called the RRT∗, which
inherits the asymptotic optimality property of the RRG, while
maintaining a tree structure rather than a graph. The RRG and
the RRT∗ were shown to have no significant overhead when
compared to the RRT algorithm in terms of asymptotic com-
putational complexity. Experimental evidence demonstrating
the effectiveness of the proposed algorithms and supporting
the theoretical claims was also provided.

The results reported in this paper can be extended in a
number of directions, and applied to other sampling-based
algorithms other than RRT. First of all, the proposed approach,
building on the theory of random graphs to adjust the length
of new connections can enhance the computational efficiency
of PRM-based algorithms. Second, the algorithms and the
analysis should be modified to address motion planning prob-
lems in the presence of differential constraints, also known
as kino-dynamic planning problems. A third direction is the
optimal planning problem in the presence of temporal/logic
constraints on the trajectories, e.g., expressed using formal
specification languages such as Linear Temporal Logic, or
the µ-calculus. Such constraints correspond to, e.g., rules of
the road constraints for autonomous ground vehicles, mission
specifications for autonomous robots, and rules of engagement
in military applications. Ultimately, incremental sampling-
based algorithms with asymptotic optimality properties may
provide the basic elements for the on-line solution of differ-
ential games, as those arising when planning in the presence
of dynamic obstacles.

Finally, it is noted that the proposed algorithms may have
applications outside of the robotic motion planning domain.
In fact, the class of incremental sampling algorithm described
in this paper can be readily extended to deal with problems
described by partial differential equations, such as the eikonal
equation and the Hamilton-Jacobi-Bellman equation.
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Fig. 1. A Comparison of the RRT∗ and RRT algorithms on a simulation example. The tree maintained by the RRT algorithm is shown in (a)-(d) in different
stages, whereas that maintained by the RRT∗ algorithm is shown in (e)-(h). The tree snapshots (a), (e) are at 1000 iterations , (b), (f) at 2500 iterations, (c),
(g) at 5000 iterations, and (d), (h) at 15,000 iterations. The goal regions are shown in magenta. The best paths that reach the target are highlighted with red.
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Fig. 2. The cost of the best paths in the RRT (shown in red) and the RRT∗ (shown in blue) plotted against iterations averaged over 500 trials in (a). The
optimal cost is shown in black. The variance of the trials is shown in (b). A comparison of the running time of the RRT∗ and the RRT algorithms averaged
over 50 trials is shown in (c); the ratio of the running time of the RRT∗ over that of the RRT up until each iteration is plotted versus the number of iterations.
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Anytime Motion Planning using the RRT∗

Sertac Karaman Matthew R. Walter Alejandro Perez Emilio Frazzoli Seth Teller

Abstract— The Rapidly-exploring Random Tree (RRT) al-
gorithm, based on incremental sampling, efficiently computes
motion plans. Although the RRT algorithm quickly produces
candidate feasible solutions, it tends to converge to a solution
that is far from optimal. Practical applications favor “anytime”
algorithms that quickly identify an initial feasible plan, then,
given more computation time available during plan execution,
improve the plan toward an optimal solution. This paper
describes an anytime algorithm based on the RRT∗ which (like
the RRT) finds an initial feasible solution quickly, but (unlike
the RRT) almost surely converges to an optimal solution. We
present two key extensions to the RRT∗, committed trajectories
and branch-and-bound tree adaptation, that together enable
the algorithm to make more efficient use of computation
time online, resulting in an anytime algorithm for real-time
implementation. We evaluate the method using a series of
Monte Carlo runs in a high-fidelity simulation environment,
and compare the operation of the RRT and RRT∗ methods. We
also demonstrate experimental results for an outdoor wheeled
robotic vehicle.

I. INTRODUCTION

The motion planning problem is to find a dynamically
feasible trajectory that takes the robot from an initial state
to a goal state while avoiding collision with obstacles.
Motion planning is of fundamental importance not only
for robotics [1], but also in many applications outside the
robotics domain [1]–[4].

From a computational complexity point of view, even a
simple form of the motion planning problem is PSPACE-
hard [5], which suggests that any complete algorithm, i.e.,
one that returns a solution if one exists and returns failure
otherwise, is doomed to be computationally intractable.

In order to achieve computational efficiency, practical
motion planning methods generally relax the completeness
requirements. Sampling-based approaches, including algo-
rithms such as the Probabilistic RoadMap (PRM) [6] and
the RRT [7], form a relatively recent line of research in this
direction. Most sampling-based algorithms are probabilisti-
cally complete, i.e., the probability that the algorithm finds
a solution, if one exists, converges to one as the number of
samples approaches infinity.

Sampling-based algorithms have the advantage that they
are able to find a feasible motion plan relatively quickly
(when a feasible plan exists), even in high-dimensional
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state spaces. Furthermore, the RRT, in particular, effectively
handles systems with differential constraints. These char-
acteristics make the RRT a practical algorithm for motion
planning on state-of-the-art robotic platforms [8].

Any robotic motion planning algorithm intended for prac-
tical use must operate within limited real-time computational
resources and incomplete and imperfect knowledge of the
environment. Such settings favor “anytime” algorithms that
quickly find some feasible but not necessarily optimal mo-
tion plan, then incrementally improve it over time toward
optimality. An anytime motion planning algorithm should
exhibit two properties: a form completeness guarantees and
asymptotic optimality. A system based on anytime planning
overlaps two functions in time: execution of (some initial
portion of) its current plan, and computation to replace (any
pending portion of) the current plan with an improved plan.

The RRT algorithm exhibits the first property, efficiently
finding an initial feasible solution. Until recently, the RRT’s
ability to improve this solution as the number of samples
increases was an open research question. Karaman and
Frazzoli [9] proved that the probability of the RRT algorithm
converging to an optimal solution is actually zero. In the
same paper, they proposed an alternative method, RRT∗,
a sampling-based algorithm with the asymptotic optimality
property, i.e., almost-sure convergence to an optimal solution,
along with probabilistic completeness guarantees. The RRT∗

algorithm achieves the asymptotic optimality absent from the
RRT without incurring substantial computational overhead.

Hence, RRT∗ provides substantial benefits, especially for
real-time applications. Like the RRT, it quickly finds a fea-
sible motion plan. Moreover, it improves the plan toward the
optimal solution in the time remaining before plan execution
is complete. This refinement property is advantageous, as
most robotic systems take significantly more time to execute
trajectories than to plan them. For example, robotic cars [10]
spend no more than a few seconds to plan a path before
driving toward the goal, which may take several minutes.
In such settings, asymptotic optimality is particularly useful,
since the available computation time as the robot is moving
along its trajectory can be used to improve the quality of the
remaining portion of the planned path.

In this paper, we leverage the anytime asymptotic op-
timality property of the RRT∗ algorithm to improve the
online convergence of the plan during execution. Our ex-
perimental results show that these proposed extensions to
RRT∗ substantially improve trajectory quality. We analyze
the algorithm, compare its performance to that of RRT
in a realistic simulation environment, and demonstrate its
effectiveness on a wheeled robotic vehicle [11]–[13].
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II. THE RRT* ALGORITHM

This section formally states the motion planning problem
and describes the RRT∗ algorithm. Consider a system with
dynamics of the following form: ẋ(t) = f(x(t), u(t)), where
x(t) ∈ X and u(t) ∈ U , where X ⊂ Rd and U ⊂ Rm denote
the state space and the input space, respectively. Let Xobs

denote the obstacle region, and Xfree = X \Xobs define the
obstacle-free space. Finally, let Xgoal ⊂ X denote the goal
region. The motion planning problem is to find a control
input u : [0, T ]→ U that yields a feasible path x(t) ∈ Xfree

for t ∈ [0, T ] from an initial state x(0) = xinit to the goal
region x(T ) ∈ Xgoal that obeys the system dynamics.

The optimal motion planning problem imposes the addi-
tional requirement that the resulting feasible path minimize
a given cost function, c(x), mapping each non-trivial admis-
sible trajectory x : [0, T ]→ X to a positive real number.

In solving the optimal motion planning problem, the RRT∗

algorithm builds and maintains a tree T = (V,E) comprised
of a vertex set V of states from Xfree connected by directed
edges E ⊆ V ×V . The manner in which the RRT∗ generates
this tree closely resembles that of the standard RRT, with the
addition of a few key steps that achieve optimality. The RRT∗

algorithm uses a set of basic procedures, which we describe
in the context of kinodynamic motion planning [14].

Sampling: The Sample function randomly samples a state
zrand ∈ Xfree from the obstacle-free region of the state space.

Distance: Dist : X × X → R≥0 returns the cost of the
optimal trajectory between two states, assuming no obstacles.
Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
nearest node in the tree in terms of the distance function.

Near-by Vertices: Given a state z ∈ X , tree T = (V,E),
and a number n, the Znearby = Near(T , z, n) function returns
the vertices in V that are near z. More precisely, define
Reach(z, l) = {z′ ∈ X | Dist(z, z′) ≤ l or Dist(z, z′) ≤
l}, and choose l(n) such that Reach(z, l(n)) contains a ball
of volume γ ((log n)/n)d, where γ is a fixed number [14].

Collision Check: The ObstacleFree(x) function checks
whether a path x : [0, T ] → X lies within the obstacle-free
region of state space, i.e., x(t) ∈ Xfree for all t ∈ [0, T ].

Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
x(0) = z1 to x(T ) = z2 along the path x : [0, T ]→ X .

Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire
procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.

Algorithm 1: T = (V, E)← RRT?(zinit)

1 T ← InitializeTree();
2 T ← InsertNode(∅, zinit, T );
3 for i = 1 to i = N do
4 zrand ← Sample(i);
5 znearest ← Nearest(T , zrand);
6 (xnew, unew, Tnew)← Steer(znearest, zrand);
7 if ObstacleFree(xnew) then
8 Znear ← Near(T , znew, |V |);
9 zmin ← ChooseParent(Znear, znearest, znew, xnew);

10 T ← InsertNode(zmin, znew, T );
11 T ← ReWire(T , Znear, zmin, znew);

12 return T

Algorithm 2: zmin ← ChooseParent(Znear, znearest, xnew)

1 zmin ← znearest;
2 cmin ← Cost(znearest) + c(xnew);
3 for znear ∈ Znear do
4 (x′, u′, T ′)← Steer(znear, znew);
5 if ObstacleFree(x′) and x′(T ′) = znew then
6 c′ = Cost(znear) + c(x′);
7 if c′ < Cost(znew) and c′ < cmin then
8 zmin ← znear;
9 cmin ← c′;

10 return zmin

Algorithm 3: T ← ReWire(T , Znear, zmin, znew)

1 for znear ∈ Znear \ {zmin} do
2 (x′, u′, T ′)← Steer(znew, znear);
3 if ObstacleFree(x′) and x′(T ′) = znear and

Cost(znew) + c(x′) < Cost(znear) then
4 T ← ReConnect(znew, znear, T );

5 return T
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III. EXTENSIONS FOR ANYTIME MOTION PLANNING

This section describes how to exploit the anytime nature
of the RRT∗ algorithm to achieve an online motion planning
algorithm that significantly improves path quality during
path execution, i.e. as the robot is moving toward its goal.
These extensions are inspired by techniques for real-time
kinodynamic planning [8].

A. Committed Trajectory

Upon receiving the goal region, the online planning algo-
rithm starts an initial planning phase, in which the RRT∗ runs
until the robot must start moving toward its goal. The amount
of time devoted to this initial phase is domain-dependent.
In the example presented in this paper involving a full-size
robotic forklift, this time is on the order of a few seconds,
which is the time required to put the vehicle in gear.

Once the initial planning phase is completed, the online
algorithm goes into an iterative planning phase, in which
the robot starts to execute the initial portion of the best
trajectory in the tree maintained by the RRT∗ algorithm.
Meanwhile, the RRT∗ algorithm focuses on improving the
remaining part of the trajectory. Once the robot reaches the
end of the portion that it is executing, the iterative phase
is restarted by picking the current best path in the tree and
executing its initial portion.

More precisely, the iterative planning phase occurs as
follows. Given a motion plan x : [0, T ] → Xfree generated
by the RRT∗ algorithm, the robot starts to execute an initial
portion of x : [0, tcom] until a given commit time tcom.
We refer to this initial path as the committed trajectory.
Once the robot starts executing the committed trajectory, the
RRT∗ algorithm deletes each of its branches and declares
the end of the committed trajectory x(tcom) to be the new
tree root. This effectively shields the committed trajectory
from any further modification. As the robot proceeds along
the committed trajectory, the RRT∗ algorithm continues to
improve the motion plan within the new (i.e., uncommitted)
tree of trajectories. Once the robot reaches the end of the
committed trajectory, the procedure restarts, using the initial
portion of what is currently the best path in the RRT∗ tree
to define a new committed trajectory. The iterative phase
repeats until the robot reaches the goal region.

B. Branch-and-Bound

In addition to considering a committed trajectory, we
also employ a branch-and-bound technique to more effi-
ciently build the tree. Branch-and-bound is used within many
domains in optimization and artificial intelligence. Most
notably, the approach we present in this section shares certain
aspects with the A∗ graph search algorithm and its variants,
which are widely used in robotics applications [15].

1) Cost-to-go functions: Before providing the details of
the branch-and-bound algorithm, let us first define a cost-to-
go function as follows. For an arbitrary state z ∈ Xfree, let
c∗z be the cost of the optimal path that starts at z and reaches
the goal region, Xgoal. A cost-to-go function CostToGo(z)
associates each z ∈ Xfree with a real number between 0

and c∗z . Essentially, CostToGo(z) provides a lower-bound
on the optimal cost to reach the goal from z. The cost-to-
go function described here is equivalent to the admissible
heuristic employed by A∗ planning algorithms.

There are many ways to define a cost-to-go function, the
most trivial being CostToGo(z) = 0 for all z ∈ Xfree.
Note that as the cost function more closely approximates
the optimal cost-to-go c∗z , the branch-and-bound algorithm
becomes more effective.

In this paper, we use the Euclidean distance between z
and Xgoal (neglecting obstacles) divided by the maximum
speed of the vehicle as a cost-to-go function.

2) Branch-and-bound algorithm: In the context of the
RRT and RRT∗, the branch-and-bound algorithm works as
follows. Let T = (V,E) be a tree and z ∈ V be a
vertex in T . Recall that Cost(z) denotes the cost of the
unique path that starts from the root node and reaches z
through the edges of T . Let zmin be the node that lies
in the goal region and has the lowest-cost trajectory that
reaches Xgoal along the edges of T . The cost of the unique
trajectory that starts from the root and reaches zmin gives
an upper bound on cost. Let V ′ denote the set of nodes z
for which the cost to get to z, plus the lower-bound on the
optimal cost-to-go, is more than the upper-bound cu, i.e.,
V ′ = {z ∈ V | Cost(z)+CostToGo(z) ≥ Cost(zmin)}. The
branch-and-bound algorithm keeps track of all such nodes
and periodically deletes them from the tree.

IV. SYSTEM DYNAMICS AND THE CONTROL PROCEDURE

This section, outlines the aforementioned steering function
and trajectory controller employed by the RRT∗.

A. Dubins Curve Steering Function
The RRT∗ algorithm uses a steering function that assumes

a Dubins vehicle model [16] to generate dynamically-feasible
trajectories for curvature-constrained vehicles. Dubins vehi-
cle dynamics have the general form:

ẋD = vD cos(θD)
ẏD = vD sin(θD)

θ̇D = uD, |uD| ≤
vD
ρ
,

where (xD, yD) and θD specify the position and orientation,
uD is the steering input, vD is the velocity, and ρ is the
minimum turning radius.

There are six types of paths that characterize the optimal
trajectory between two states for a Dubins vehicle, each
specified by a sequence of left, straight, or right steering
inputs [16]. In this paper, we consider four path classes and
choose the steering between two states that minimizes cost.
Karaman and Frazzoli [14] describe the steering function in
more detail.

B. Trajectory Tracking
The steering function returns a trajectory parametrized

by a sequence of reference states (xR, yR, θR) and a ref-
erence velocity vR. We employ a straightforward steering
controller [13] to track this reference trajectory.
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Let zn be the robot’s current state and zn+1 be the next
reference point. Define the cross-track error ect be the dis-
tance between zn and zn+1 along a line perpendicular to
the desired orientation θn+1. We steer the vehicle along the
trajectory by controlling the steering angle δ via

δ = Kstr arctan(Kct ect) +Kstr eθ,

where Kstr and Kct are gains. Meanwhile, we employ a PI
controller to track the reference speed vR,

u = Kp(vR − v) +Ki

∫ t

0

(vR − v(τ)) dτ.

Using these controllers, the robot tracks the trajectory defined
by the sequence of reference points.

V. RESULTS

We implemented our algorithm in simulation as well as
on an outdoor ground vehicle. In this section we discuss
the performance of the RRT∗ in both domains and compare
the results against those of a standard RRT. The simulations
demonstrate the algorithm’s ability to exploit computation
available during the execution of the committed trajectory to
improve the solution. In contrast, while RRT may improve
the trajectory by chance through constant re-planning, such
improvements are unlikely (probability zero convergence).

A. Performance Analysis

We first evaluate the implications of execution-time re-
planning for the RRT∗ using a high-fidelity vehicle simulator.
The vehicle dynamics correspond to those of a rear wheel-
steered nonholonomic ground vehicle. Shown in Fig. 1, the
environment consists of a bounded region with two polygonal
obstacles. The planner must find a feasible trajectory from
an initial pose in the lower left of the environment to the
goal region indicated by the green box. We performed a
total of 166 Monte Carlo simulation runs with the RRT∗

motion planner and 191 independent runs with the standard
RRT. Both planners use branch-and-bound for tree expansion
and maintain a committed trajectory. Both the RRT and
RRT∗ were allowed to explore the state space throughout
the execution period.

Figure 1 depicts the result of two independent runs of
the RRT∗ in the simulation environment. In the first, the
RRT∗ initially finds a trajectory that takes the vehicle along
a relatively high cost path to the right of the obstacle
(Fig. 1(a), in blue). As the vehicle begins to execute the
plan, however, tree rewiring reveals a shorter, lower-cost
route between the obstacles (Fig. 1(b)). Meanwhile, the
second run demonstrates the benefit of branch-and-bound and
online refinement as the algorithm improves the current path
(Fig. 1(c)) into a more direct path to the goal (Fig. 1(d)).

We compare the paths executed by the RRT∗ with those
that result from a standard RRT-based planner. Figure 2
shows two different runs of the RRT at different points of
execution. The re-planning together with branch-and-bound
enable the RRT to refine an existing solution as demonstrated
by the removal of unnecessary loops in the path. In contrast

(a) RRT∗ run 1 (b) RRT∗ run 1

(c) RRT∗ run 2 (d) RRT∗ run 2

Fig. 1. The RRT∗ tree at two points during the execution of two different
simulation runs. In the first run, (a) the planner initially finds the longer
path to the right of the obstacle but, as a result of the online refinement, (b)
the RRT∗ correctly chooses the lower cost path between the obstacles. The
results of the second run demonstrate typical behavior of the RRT∗, which
refines (c) an initial path into (d) a more direct path to the goal.

(a) RRT run 1 (b) RRT run 1

(c) RRT run 2 (d) RRT run 2

Fig. 2. Two simulation runs with the RRT motion planner. (a,b) The first
run demonstrates a common failure of the RRT, which effectively gets stuck
after constructing a tree biased toward the longer route to the goal. While
the RRT does refine the path (b), it converges to a high-cost solution. (c)
During the initial period of the second run, the RRT identifies a feasible path
to the goal that includes a loop maneuver. The planner continues to search
for an improved trajectory and, with the assistance of branch-and-bound,
(d) discovers a shorter loop-free path that the vehicle then executes.

to the RRT∗ algorithm, however, these improvements tend
to be local in nature and do not provide the significant
modifications to the structure of the tree necessary to achieve
lower cost solutions. Consequently, the free space bias of the
RRT limits the extent to which the planner is able to refine
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(a) RRT (b) RRT∗

Fig. 3. Vehicle paths traversed for (a) 65 simulations of the RRT and (a)
140 simulations with our RRT∗ planner.

paths. This effect is evident in the result of the first run as
the RRT gets “stuck” with a tree that favors longer paths
to the right of the obstacle (Fig. 2(a)) and converges to a
sub-optimal path (Fig. 2(b)). As is evident in Fig. 3(a), the
RRT frequently produces trajectories that are unnecessarily
long due either to the selection of over-long routes, or to
oscillations in otherwise direct paths.

Figure 3(b) depicts the final paths for the RRT∗ simu-
lations. In each case, the algorithm correctly identifies the
route between the two obstacles as providing shorter paths
to the goal. Occasionally, the RRT∗ yields an initial solution
that steers the vehicle away from the goal. As the vehicle
executes the path, the RRT∗ rewires the structure of the tree
to discover a more direct path. This refinement continues
while the vehicle executes the committed portion of the
trajectory. The result is loop-free paths that tend to be more
direct than those of the RRT.
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(b) RRT

Fig. 4. Histogram plots of the executed path length for simulations of (a)
the RRT∗ and (b) the RRT. The vertical dashed lines in (b) depict the range
of path lengths that result from the RRT∗ planner.

The online formulation of the RRT∗ algorithm exploits
the execution period to modify the tree structure as it
converges to the optimal path. This convergence is evident
in the distribution over the length of the executed simulation
trajectories (Fig. 4(a)) that exhibits a mean length (cost)
of 23.82 m and a standard deviation of 0.91 m for the set
of 166 simulations. For comparison, Fig. 4(b) presents the
corresponding distribution for the RRT planner. The mean
path length for the 191 RRT simulations is 29.72 m while the
standard deviation is 7.48 m. The significantly larger variance
results from the RRT getting “stuck” refining a tree with sub-
optimal structure. The anytime RRT∗, on the other hand,
opportunistically takes advantage of the available execution
time to converge to a near-optimal path.

B. Motion Planning for a Robotic Forklift

In addition to the simulation experiments, we demonstrate
the performance of the RRT∗ on a robotic ground vehicle.
The platform (Fig. 5) is a rear wheel-steered robotic forklift
designed to operate on uneven terrain alongside and in
collaboration with humans [11].

We conducted a series of tests with both the RRT∗ anytime
algorithm as well as the RRT-based planner. The vehicle
operated in a 20 m by 20 m packed gravel environment
consisting of five obstacles (Fig. 6). The task was to navigate
from a starting position in one corner to a 1.6 m goal
region in the opposite corner while avoiding the obstacles.
We manually specified the location of the obstacles. In
each experiment, planning started immediately prior to the
controller tracking the committed trajectory.

Figure 6 presents the result of four different tests with
the RRT∗ anytime motion planner. The plots depict the best
trajectory as maintained by the RRT∗ at different points
during the plan execution (false-colored by time). In the
scenario represented in the upper left, the RRT∗ initially
identifies a sub-optimal path that goes around an obstacle
but, as the vehicle begins to execute the path, the planner
correctly refines the solution to a shorter trajectory. As the
vehicle proceeds along the committed trajectory, the planner
continues to rewire the tree as evident in the improvements
near the end of the execution when the paths more directly
approach the goal.

Fig. 5. The robotic forklift used for experimental validation.
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Start time

End time

Start time

End time

Start time

End time

Start time

End time

Fig. 6. Four runs of the anytime RRT∗ on the robotic forklift. Starting in
the upper left, the forklift was tasked with driving to the goal region while
avoiding obstacles. The trajectories indicate the optimal path as estimated
by the RRT∗ at different points in time during the execution and are false-
colored by time. Circles denote the initial position for each path.

Start time

End time

Start time

End time

Fig. 7. Plans generated by the anytime planner using the standard RRT.

For comparison, Fig. 7 presents the resulting paths for the
anytime planner utilizing the standard RRT. In the scenario
depicted on the left, the RRT initially finds a looping trajec-
tory that goes wide to the left but, after moving a few meters,
discovers a shorter path that takes the vehicle wide to the
right. At this point, the structure of the tree biases the RRT
toward refinements that improve the trajectory only locally.
In the second test, the RRT revises the initial trajectory that
unnecessarily goes to the right of the obstacle and discovers
a shorter, yet sub-optimal path to the goal.

VI. CONCLUSION

Incremental sampling-based motion planners have been
used successfully to plan trajectories for vehicles with re-
stricted dynamics operating in the presence of obstacles. The
appeal of incremental planners such as the RRT stems, in
part, from their efficiency at identifying feasible motion plans
and their intuitive implementation. However, the feasible
solutions produced by the RRT tend to be far from optimal.

This paper described an anytime motion planning algo-
rithm that uses the RRT∗ to solve for and improve solutions
to the motion planning problem in an online fashion. We
described methods that enable the planner to asymptotically
converge to the optimal solution online, during trajectory
execution. We used Monte Carlo simulation to evaluate
convergence of the anytime RRT∗ algorithm, and compared
it to a standard RRT-based motion planner. We further
demonstrated the algorithm’s performance while planning
trajectories for a large ground vehicle.
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