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Introduction
Autonomous Multi-Modal Localization and Mapping:

Fundamentals and the State-of-the-Art



 Where am 
I now?

The base questions
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 What am I 
looking at?

 Common to all mobile robots that “want” to interact (manipulate, navigate,
actively observe, etc.) with their environment.



 “Real” Autonomy

The base problem
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 The chicken & egg challenge:
 Localize against what? A map is needed!

 Map where? A pose is needed!

 Where am I 
now?

 What am I 
looking at? Inference



 The general problem of recovering sensor poses and
3-dimensional structure from a set of sensor snapshots.
 Potentially unordered.

 Typically refers to passive cameras - minimal SWaP
footprint, nature- inspired.

 Early works date back to the first decades of mobile
robot research. Field carries influence from
Photogrammetry:
 H. Longuet-Higgins, “A computer algorithm for reconstructing a

scene from two projections,” Nature, 1981.

 C. Harris and J. Pike, “3d positional integration from image
sequences,” in Proc. Alvey Vision Conference, 1988.

The history
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 Structure From Motion



 SLAM is more of a concept rather than a single algorithm.
Can be implemented using:
 Different hardware, sensor types, sensor configurations.

 Different methods, algorithms, processing schemes.

 Is it important?

The applications
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 Simultaneous Localization And Mapping

 Autonomous vehicles  Augmented Reality  “Simple” Appliances



The basics
Autonomous Multi-Modal Localization and Mapping:

Fundamentals and the State-of-the-Art



 Term first coined decades ago.
 Randall Smith, Matthew Self, Peter Cheeseman,

“Estimating Uncertain Spatial Relationships in
Robotics”, Autonomous Robot Vehicles, 1990.

 Leonard, Durrant-Whyte, “Mobile robot
localization by tracking geometric beacons”,
IEEE Transaction on Robotics and Automation,
1991.

 Sensor-based inference.

 Generalized case of Visual-SLAM:
 Front-end tracking

 Back-end mapping

The basics
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 Simultaneous Localization And Mapping

 proximity 
(sonar)?



 The problem of estimating a vehicle’s
egomotion from Visual input alone.
 “Odometry” term inspired by wheeled robots.

 Actually to address problems of wheel slippage
on NASA Mars rovers (eneven / rough terrain).

 Generalized 6-DoF motion estimation.

 The first Motion Estimation Pipeline & the earliest
Corner Detector:

H. Moravec, “Obstacle avoidance and
navigation in the real world by a seeing robot
rover,” Ph.D. dissertation, Stanford Univ., 1980.

 Visual Odometry
 Estimate 6-DoF pose [R|T] “incrementally”

The basics
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 Visual Odometry

x1j
x2j

x3j

Xj

P1
P2

P3

 Features and Landmarks



 Basically a bearing sensor:
 Structure and depth are ambiguous from

single snapshots.

 But image is very rich in additional cues:

The basics
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Camera

 Lighting (Shading)

 Camera Parameters (Focus / Defocus)

 Texture

 Perspective



 Basically a bearing sensor:

 Mobile Robotics !
 Structure From Motion

 Triangulation

 Epipolar Geometry

The basics
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Camera

 More: Hartley, R.I. and Zisserman, A., “Multiple View Geometry in Computer Vision”, 
Cambridge University Press

 Even with motion pose is 
recoverable up to a scale !



 Corner Detection:
 FAST / AGAST

 SIFT

 SURF

 FAST/AGAST:
 Features from Accel. Segment Test (9/16)

 Particular efficiency for Real-Time application

 Further Acceleration with Machine Learning

The basics
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 Landmark Detection & Tracking from Image Features 

 Descriptor Computation:
 SIFT

 SURF

 BRISK

 Invariance (Scale – Rotation – Affine T)
 BRISK Sampling Pattern

shift at least
2 directions



 Detection – Descriptors –
Matching
 Need to iterate 100s of

times per frame
 Need to happen in the

order of [ms]

The basics
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 Image Features – the Bottleneck

 Mobile Robotics ! Constrain the search region

 Apply pyramidal search Apply motion model



The basics

Autonomous Robots Lab, University of Nevada, Reno

 Image Features:
 Feature Matching is not perfect

 Detection – Descriptors – Matching

 Robust Estimation – RANSAC
 Outlier rejection (actually “model fitting”)

 Robust outlier rejection over sophisticated features.

 Critically affect eigenvalue decomposition



The basics
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 Image Feature-based Methods:
 (Non-linear) Minimization of Reprojection Error

 Image Appearance-based Methods:
 Minimization of Photometric Error



(Sparse) Feature Approaches
Autonomous Multi-Modal Localization and Mapping:

Fundamentals and the State-of-the-Art



Landmark SLAM 
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Monocular VO:
 Motion is recoverable up to a scale factor

 3D Landmark (point)-pairs triangulation
 No image-to-image pair absolute scale

 Transformation-to-transformation relative scale

 Common point-pair distance ratio



Landmark SLAM 
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Monocular VO:
 Incremental pose “Belief Propagation“

 Uncertainty will increase

 Odometry will drift

 Filter-based approach:

 Motion-model only

 Incremental estimation



Landmark SLAM 
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Monocular VO:
 A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, "MonoSLAM: Real-

Time Single Camera SLAM," IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2007.

 Extended Kalman Filter
 Includes Landmarks as filter states

 “Append” - Bottleneck becomes map size



Landmark SLAM 
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 Stereo VO:
 Sliding stereo , Binocular stereo

 The known baseline advantages
 Estimation of absolute scale

 Estimation of scene depth (Mapping)

Matching cost disparity

Left Right

scanline



Landmark SLAM 
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 Stereo VO:
 A naïve exploitation

 The known baseline advantages
 Information Filter benefits

 Monocular depth uncertainty



Landmark SLAM 

Autonomous Robots Lab, University of Nevada, Reno

 Correspondences for VO:

 2D-to-2D
 Minimally requires (Nister’s)5-points 
 (Higgins’) 8-point simpler solution –

stacking & decomposition suffers 

 3D-to-2D
 Perspective-n-Points

 (Gao’s) 3-point solution of calibrated 
camera +1 disambiguates 4 solutions

 3D-to-3D
 3 (non-collinear) correspondences

 ICP 



Landmark SLAM 
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Correspondences for VO:
 Generally, Image Reprojection Error minimization is more accurate

 Why is R&D still considering monocular?
 A point at infinity will exhibit no parallax.

 Stereo VO degenerates to Monocular.
What can be done in this case?



Landmark SLAM 
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 Visual SLAM:
Goal: Global, consistent estimate of the robot path.
 Requires: Optimization of VO pipeline. How?

 Skip Data - Take Keyframes. 
When? (3D feature uncertainty-driven)

 Perform Optimization
When? (Last m keyframes)



Landmark SLAM 
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 Visual SLAM:
 Pose Graph Optimization.

 Bundle Adjustment

 Keyframe-based pose graph

 Non-adjacent frames come into play.

 Gauss-Newton / Levenberg-Marquadt
g2o , GTSAM , Ceres

 3D- Features are considered too.
 Optimization of 3D structure, Camera

motion, Camera parameters – Costly.
 Gauss-Newton / Levenberg-Marquadt

g2o , GTSAM , Ceres



Landmark SLAM 
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 Visual SLAM:
Global Landmark Correspondence – Global Optimization

Closing the loop

Avoid duplication of the map.

Compensate for accumulated drift

Relocalization capacity.

 Global
Refinement



Landmark SLAM 
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 Visual SLAM:
 Place Recognition (vision-based).

D. Galvez-López and J. D. Tardos, "Bags of Binary Words for Fast 
Place Recognition in Image Sequences," IEEE Transactions on 
Robotics, 2012.

 Find most similar images in query set.
 Maintain “Visual Word” dictionary tree.

 Inverted text file logic.



Landmark SLAM 
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 Sparse Feature-based SLAM: 
 Parallel Tracking And Mapping (PTAM)

a complete implementation
 G. Klein and D. Murray, "Parallel Tracking and Mapping 

for Small AR Workspaces," IEEE and ACM International 
Symposium on Mixed and Augmented Reality, 2007.



Landmark SLAM 
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 Sparse Feature-based SLAM: 
 Parallel Tracking And Mapping (PTAM)
 Tracking and Mapping done in separate 

threads.

 Designed for small workspaces
 Requires Initialization

 No-drift, efficient P3P localization 
with known landmarks

 BA optimized known landmarks & 
keyframes

 Reduced to windowed VO for 
large environments



Dense Approaches
Autonomous Multi-Modal Localization and Mapping:

Fundamentals and the State-of-the-Art



Direct Image Alignment
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 Appearance-based VO:
 Per-pixel intensity error minimization.

 Dense 
 Per-pixel intensity error

minimization.
 Given a dense, textured

surface model, predict what
should be seen



Direct Image Alignment
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 Dense VO:
 Whole image alignment.

 Minimization of Photometric
Error cost function:

Why bother?
 Sparse pipeline needs image features

 Example FAST detections
in degradation



Direct Image Alignment

Autonomous Robots Lab, University of Nevada, Reno

 Dense VO:
 Clear global minimum despite 

single-pixel error term.

 Local minima!

 Whole image alignment: 
Redundancy for few estimated 
parameter.
Robustness.

 Gradient Descent for cost function 
requires initialization near global 
minimum.

 Errors & Derivatives Optimization: 
Gauss-Newton.

 Paradox: Given trivially 
parallelizable nature, framerate
increase reduces requirements.



Direct Image Alignment
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 Dense VO:
 Tools:
 GPU

 Rendering engines
(OpenGL)

 Whole image: 
RGB ++ (D)

 Dense Pixel Transfer Assets:
 Mesh surface representation.

Can predict self-occlusion.



Direct Image Alignment
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 Dense VO:
 R. A. Newcombe, S. J. Lovegrove, A. J. Davison, "DTAM: Dense tracking and 

mapping in real-time," International Conference on Computer Vision, 2011

 Dense Tracking & Mapping (DTAM)

 3D reconstruction  Robustness



Direct Image Alignment
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 Semi-Dense:
 Jakob Engel, Thomas Schöps, Daniel Cremers, "LSD-SLAM: Large-Scale Direct 

Monocular SLAM," European Conference on Computer Vision, 2014.

 Sparse:
 C. Forster, M. Pizzoli and D. Scaramuzza, "SVO: Fast semi-direct monocular visual 

odometry," IEEE International Conference on Robotics and Automation (ICRA), 2014.



Direct Image Alignment
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 Extras:
 Stereo (Semi)-Direct:  J. Engel, J. Stückler and D. Cremers, "Large-scale direct 

SLAM with stereo cameras,“ IROS 2015.

 Light Source Detection: T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. 
Glocker and A. J. Davison, “ElasticFusion: Dense SLAM Without A Pose Graph,” 

RSS 2015.



Multi-Modal Approaches
Autonomous Multi-Modal Localization and Mapping:

Fundamentals and the State-of-the-Art



Visual-Inertial Fusion
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Monocular Vision (issues)
 Absolute pose is known up to a scale
 Inertial Measurement Unit (IMU) provides accelerations.

Velocity, scale recoverable from 1 feature, 3 observations.

Better-than constant velocity model in propagation.



Visual-Inertial Fusion
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 Visual-Inertial Odometry:
 Filter-based.
 AI Mourikis, SI Roumeliotis, “A multi-

state constraint Kalman filter for vision-
aided inertial navigation,” ICRA, 2007.

 M. Bloesch, S. Omari, M. Hutter and R. 
Siegwart, "Robust visual inertial 
odometry using a direct EKF-based 
approach," IROS, 2015.

 Non-linear Optimization-based
 Stefan Leutenegger, Simon Lynen, 

Michael Bosse, Roland Siegwart and 
Paul Timothy Furgale, “Keyframe-
based visual–inertial odometry using 
nonlinear optimization”, IJRR, 2015.



Depth – Time-of-Flight
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 Depth sensors – ICP:
 How much space fits into the volume?

 Depends on resolution:
2GB GPU: 512x512x512 voxels
5mm/voxel: 2.5m side length

 KinectFusion



Depth – Time-of-Flight
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 Depth sensors – ICP:
 For arbitrarily large exploration 

volumes, treat TSDF as circular 
buffer.

 Mesh Triangulation: Pointcloud
“slices” of TSDF

 Whelan, Thomas; Kaess, Michael; Fallon, 
Maurice; Johannsson, Hordur; Leonard, 
John; McDonald, John, CSAIL 2012.

 Kintinuous: Spatially 
Extended KinectFusion



Depth – Time-of-Flight
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 LIght Detection And Ranging:
 Extreme accuracy over long 

distances.

 Local surface smoothness
 Find planes (pathes), edges, 

track across LiDAR sweeps
 Optimization-based (Levenberg-

Marquadt)
 Integration of pointclouds, 

Transform estimation at different 
rates.

 Zhang,  Ji, and  Sanjiv Singh.  "Low-drift 
and  real-time LiDAR Odometry And 
Mapping." Autonomous  Robots, 2016.



Thermal Cameras
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Monocular Vision (non-visible spectrum)
Feature-based

FAST, GFFT (Shi-Tomashi)

 S. Vidas and S. Sridharan, "Hand-held 
monocular SLAM in thermal-infrared," 
ICARCV, 2012.

Benefits: 
Unique Invariance !



Extras
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 Semantic SLAM:
 Renato F. Salas-moreno , Richard A. Newcombe , Hauke Strasdat , 

Paul H. J. Kelly , Andrew J. Davison, “SLAM++ : Simultaneous 
Localisation and Mapping at the Level of Objects”, CVPR 2013

 Map is a pure graph
of objects.

 Relies on Database of known objects.

 ICP between measurement 
and Rendered World



Research & Development at ARL
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Multi-Modal Characterization of
DOE-EM Facilities
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Challenges:
 Unknown Maps.

 Ambiguous / Degraded-structure subsets.

 Visually Degraded Environment.

 Tight clearances.



Multi-Modal Characterization of
DOE Nuclear Facilities
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Multi-Modal sensing. 
 Stereo Vision.
 Visual-Inertial Fusion.
 Time-of-Flight.

 Visible light

 NIR Spectrum

 LiDAR unit.
 Thermal cameras.
 RADAR.

 CamSync
module

 Active Illumination



Consistent Localization & Mapping
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Localization & Mapping in VDE
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Multi-Modal Localization & Mapping
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 Fusion of Multiple 
sensor Modalities.
 Filter-based fusion.
Calibrated MM 

sensors package.

 Tight-fusion research.
 3D Features



Thank you! 
Student Projects Announcement !



 Project #1: Flying and Acting Together
 Perceive the world together.

 Distributed state estimation between
collaborative aerial robotic systems.

 Collaborative navigation and mapping.

 Collaborative physical action for tasks
such as aerial transportation.

 Constructive development and testing
using the facilities of the Autonomous
Robots Arena.

 Indicative example: Rapid beachhead
building in disaster areas.

Student Projects
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 Project #2: Adapting to the Environment
 Learn improved localization and planning

behaviors by evaluating different active
perception or multi-modal fusion strategies
in different environment subsets.

 Identify the map between environment
types, optimize active perception and
multi-modal fusion strategies.

 Constructive development and testing
using the facilities of the Autonomous
Robots Arena.

 Indicative example: Robot that operates in
partially well-lit & dark. Learn best behavior,
in first steps. Adapt automatically to
different cases.

Student Projects
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Thank you! 
Please ask your question!


