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The base gquestions

» What am |
looking ate

» Where am

= Common to all mobile robots that “want” to intferact (manipulate, navigate,
actively observe, etc.) with their environment.
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The base problem

» “Real’ Autonomy

= The chicken & egg challenge:
= | ocalize against whate A map is needed!

= Map where¢ A pose is needed!

» Where am |

What am |

looking at?
Inference

§
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The history

» Structure From Motion

= The general problem of recovering sensor poses and
3-dimensional structure from a set of sensor snapshofs.

= Potentially unordered.

= Typically refers to passive cameras - minimal SWaP
footprint, nature- inspired.

= FEarly works date back to the first decades of mobile
robot research. Feld carries influence from
Photogrammetry:

= H. Longuet-Higgins, “A computer algorithm for reconstructing a
scene from two projections,” Nature, 1981.

= C. Harris and J. Pike, "3d positional integration from image
sequences,” in Proc. Alvey Vision Conference, 1988.
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The applications

= Simultaneous Localization And Mapping

= SLAM is more of a concept rather than a single algorithm.
Can be implemented using:

» Different hardware, sensor types, sensor configurations.

= Different methods, algorithms, processing schemes.
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= Autonomous vehicles » Augmented Reality » “Simple” Appliances
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The basICs

= Simultaneous Localization And Mapping

= Term first coined decades ago.

= Randall Smith, Matthew Self, Peter Cheeseman, Input Images <
“Estimating Uncertain Spatial Relationships in
Robotics”, Autonomous Robot Vehicles, 1990.

= |eonard, Durrant-Whyte, “Mobile  robot Visua O Core > No

. . i . Estimate poses
localization by tfracking geometric beacons”, _ p

IEEE Transaction on Robotics and Automation,

1991. )

» Sensor-based inference. ™= proximity
(sonar)e

» Generalized case of Visual-SLAM:

Refined pose graph

Loop Detected?

= Front-end tracking

» Back-end mgpping Optimize pose graph
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The basICs

» Visual Odometry

» The problem of estimating a vehicle's
egomotion from Visual input alone.

» “Odometry” term inspired by wheeled robofs.

» Actuadlly to address problems of wheel slippage
on NASA Mars rovers (eneven / rough terrain).

» Generalized 6-DoF motion estimation.

= The first Motion Estimation Pipeline & the earliest
Corner Detector:

H. Moravec, “Obstacle avoidance and
navigation in the real world by a seeing robot
rover,” Ph.D. dissertation, Stanford Univ., 1980.

» Visual Odometry

» Estimate 6-DoF pose [R|T] “incrementally”

= \ _ Vehicle-Featurq Relative
T &\ Observation
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Mobile Vehicle

Global Reference Frame
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The basICs

» Camera

= Basically a bearing sensor:

= Structure and depth are ambiguous from
single snapshofs.

= Butfimage is very rich in additional cues:

= Lighting (Shading)

i L\
i
R\ §
)

= Perspective

.

» Camera Parameters

14

¥
AUTONOMOUS
ROBOTS
LAB

Autonomous Robots Lab, University of Nevada, Reno ‘




’ = Even with motion pose is
Th e bOSICS recoverable up o a scale !

» Camera

= Basically a bearing sensor:

=» Mobile Robotics !

» Sfructure From Motion

= Triangulation

» Epipolar Geometry

3D surface

Image 2

Image 1

= More: Harfley, R.I. and Zisserman, A., “Multiple View Geomeitry in Computer Vision”,
Cambridge University Press ’
Autonomous Robots Lab, University of Nevada, Reno "1%8%8%‘8“0“5 @

LAB




The basICs

» | andmark Detection & Tracking from Image Features

= Corner Detection: = Descriptor Computation:
= FAST / AGAST = SIFT
= SIFT = SURF
= SURF = BRISK
shift at least &,
= FAST/AGAST: 2 directions = |nvariance (Scale — Rotation — Affine T)
= Features from Accel. Segment Test (9/16) » BRISK Sampling Pattern
= Particular efficiency for Real-Time application TFRIE
15F ,-'o{",“ o\’«--\
= Further Acceleration with Machine Learning i »b’_)‘-:}i"ﬁ\}{" AE3N
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The basICs

» |mage Features — the Bottleneck

» Detection — Descriptors —
Matching

» Need fo iterate 100s of
times per frame

=» Need to happen in the
order of [ms]

= Mobile Robotics | Constrain the search region

= Apply motion model = Apply pyramidal search
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The basics
= Image Features: e e S e

Harris Patch ++++

= Feqafure Matching is not perfect

Shi-Tomasi Patch ++++ - suri st

= Detection — Descriptors — Matching SIFT SIFT B T-—. +
SURF SURF ++ ittt o
FAST BRIEF ++++ +++ L
ORB ORB P +++ ++++

: . FAST BRISK ++++ 4+
= Robust Estimation — RANSAC SRk
= Qutlier rejection (actually “model fitting”)
» Robust outlier rejection over sophisticated features.

y (meters)

mmmmm Before removing the outliers
== After removing the outliers

-60

-80 Lt ‘ q L
0 20 40 60 80 100 120 140

» Critically affect eigenvalue decomposition i
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The basics s =
= |mage Feature-based Methods:

= (Non-linear) Minimization of Reprojection Error

v' large frame-to-frame motions

v' Accuracy: Efficient optimization of
structure and motion (Bundle Adjustment)

X Slow due to costly feature extraction
and matching

X Matching Outliers (RANSAC)

» |mage Appedarance-based Methods:

» Minimization of Photometric Error

Ll
v’ All information in the image can be k—1 I
exploited (precision, robustness) l \\

v" Increasing camera frame-rate
reduces computational cost per di
frame

X Limited frame-to-frame motion

. S Pi
X Joint optimization of dense structure ’
and motion too expensive Autonomous Robots Lab, University of Nevada, Reno ‘%8%8%‘8“%5 @
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(Sparse) Feature Approaches

Autonomous Multi-Modo

Localiza!

Fundamen:

lon and Mapping:

als and 1

ne State-of-the-Art



Landmark SLAM
- - /.
Monocular VO: /

= Motion is recoverable up to a scale factor - \

= 3D Landmark (point)-pairs tfriangulation

= No image-to-image pair absolute scale

» Transformation-to-transformation relative scale

» Common point-pair distance ratio

common 3D points ﬂ'l ﬂ'z /1’3

© % €« for scale propagation

* o u s _‘_/\\
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Landmark SLAM

=» Monocular VO: o ey P

= |ncremental pose “Belief Propagation® ¢

= Uncertainty will increase

» Odometry will drift

» |ncremental estimation

» Filter-based approach:

Start

N . ’ ;
= Motion-model only
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Landmark SLAM

» Monocular VO:

= A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, "MonoSLAM: Real-
Time Single Camera SLAM," I[EEE Transactions on Pattern Analysis and
Machine Intelligence, 2007.

» Extended Kalman Filter

» |ncludes Landmarks as filter states

= “Append" - Boftleneck becomes map size

14
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Landmark SLAM
» Stereo VO:

= Sliding stereo , Binocular stereo

Long-baseline system

= The known baseline advantages Left Right

= FEstimation of absolute scale

Left camer Steceo baseline Rightcamer

= Estimation of scene depth (Mapping)

scanline

Autonomous Robots Lab, University of Nevada, Reno ‘
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Landmark SLAM

» Correspondences for VO:

» 7D-10-2D
= Minimally requires (Nister's)5-points

® (Higgins’) 8-point simpler solution —
stacking & decomposition suffers

» 3D-t0-2D

» Perspective-n-Points

» (Gao’s) 3-point solution of calibrated
camera +1 disambiguates 4 solutions

» 3D‘TO‘3D A :i__—-————————"'/‘;:' \Z% Y2
= 3 (non-collinear) correspondences Y\ S " x
1
Ty

= |CP

4
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Landmark SLAM

®» Correspondences for VO:

» Generally, Image Reprojection Error minimization is more accurate

Type of
correspondences

72 D=72|D)
5.D=E1D X
S22 X X

= Why is R&D still considering monoculare
= A point at infinity will exhibit no parallax.
» Stereo VO degenerates to Monocular.

» What can be done in this case?

§
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Landmark SLAM
» Visual SLAM:

» Goal: Global, consistent estimate of the robot path.

» Requires: Optimization of VO pipeline. Howe

» Skip Data - Take Keyframes.
Whene (3D feature uncertainty-driven)

= Perform Optimization |
When? (Last m keyframes) e X X o

a) Markov Random Field b) Filter C) Keyframe BA

4
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Landmark SLAM
» Visual SLAM:

» Pose Graph Optimization.

» Keyframe-based pose graph

= Non-adjacent frames come into play.

» Gauss-Newton / Levenberg-Marquadt
g20 , GTSAM , Ceres

= Bundle Adjustment

» 3D- Features are considered too.

» Optimization of 3D structure, Camera
motion, Camera parameters — Costly.

» Gauss-Newton [/  Levenberg-Marquadt
g20, GTSAM , Ceres

4
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Landmark SLAM
» Visual SLAM:

» Global Landmark Correspondence — Global Optimization

» Closing the loop

» Globdal
Refinement

detected!!!

= Avoid duplication of the map.
=» Compensate for accumulated drift

» Relocalization capacity.

4
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Landmark SLAM

= Visual SLAM:
» Place Recognition (vision-based).

» D. Galvez-Lopez and J. D. Tardos, "Bags of Binary Words for Fast
Place Recognition in Image Sequences,” IEEE Transactions on
Robotics, 2012.

= Find most similar images in query set.

Loop detected

= Maintain “Visual Word"” dictionary tree.

= |nverted text file logic.

Vaocabulary tree

I=L,
b 4 Execution time: 16.1 ms
m m Direct index mage 1
AR f1\ haccle 3 e &
Words / | A 1\ : 2
—0O0 OO OO®®-o : % :
I L
’ Irverse ndex Word 1 ‘
frage &3 rage 12 - i
W, =om v, =0m ‘

§
Autonomous Robots Lab, University of Nevada, Reno ‘%8%8%‘8”40”5 @

LAB




Landmark SLAM

» Sparse Feature-based SLAM:

= Parallel Tracking And Mapping (PTAM)

a complete implementation

» G. Klein and D. Murray, "Parallel Tracking and Mapping
| for Small AR Workspaces," IEEE and ACM International
I Symposium on Mixed and Augmented Reality, 2007.

Update keyframe
data associaton

Integrate
keyframe Local
l bundle adjust

Add new

features = Global

bundle adjust
Update
data associatio
Sleep Sms
On the train to Kyoto

§
Autonomous Robots Lab, University of Nevada, Reno ‘QSE%QMO”S @

LAB




Landmark SLAM

®» Sparse Feature-based SLAM:
= Parallel Tracking And Mapping (PTAM)

= Tracking and Mapping done in separate
threads.
= Designed for small workspaces
= Requires Inifialization

» No-drift, efficient P3P localization
with known landmarks

= BA optimized known landmarks &
keyframes

» Reduced to windowed VO for
large environments

u‘"r. >. $. ':: s o

T -
&Y o

oo

%
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Swarm of Micro Flying Robots
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Direct Image Alignment
» Appearance-pbased VO:

» Per-pixel intfensity error minimization.
Dense Semi-Dense Sparse

» Dense

= Per-pixel intensity error
minimization.

= Given a dense, textured
surface model, predict what
ShOU|d be seen Reference Image

14
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Direct Image Alignment
= Dense VO:

= Whole image alignment.

iy
Y e,
'
) —

Textured Tarnac

=» Minimization of Photometric
Error cost function:

T
—
Q8
p—

Plain Tarmac

=» Why bothere

» Sparse pipeline needs image features

» Example FAST detections
in degradation

Geometric Geometric, blur Geometric,
transformation and noise motion blur

§
and blur Autonomous Robots Lab, University of Nevada, Reno ‘%8%8%‘8“0”5 @
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Direct Image Alignment
= Dense VO:

» Clear global minimum despite
single-pixel error term.

= Whole image alignment:
Redundancy for few estimated
= | ocal minimal oarameter.

RObustness.

» Gradient Descent for cost function
requires inifialization near global
minimum.

» FErrors & Derivatives Optimization:
Gauss-Newton.

Az = Paradox: Given trivially
parallelizable nature, framerate

Ax

Geometric Geometric, blur, Geometric, ! .
only noise blur, noise, INCrease reduces requirements.
occlusion

§
Autonomous Robots Lab, University of Nevada, Reno ‘%8%8%‘8”40”5 @

LAB




Direct Image Alignment
= Dense VO:

» Tools:
» GPU

= Rendering engines
(OpenGl)

= Whole mage:
RGB ++ (D)

(a) First input image (b) Second input image

» Dense Pixel Transfer Assets:

» Mesh surface representation.
Can predict self-occlusion.

(¢) Warped second image (d) Difference image

4
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Direct Image Alignment
= Dense VO.

= R. A. Newcombe, S. J. Lovegrove, A. J. Davison, "DTAM: Dense tracking and
mapping in real-time," Infernational Conference on Computer Vision, 2011

= Dense Tracking & Mapping (DTAM)

» 3D reconstruction » Robustness
- out elocaisation PTA[/] e & Muray o e

¥
\1!
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Direct Image Alignment

» Semi-Dense:

= Jakob Engel, Thomas Schops, Daniel Cremers, "LSD-SLAM: Large-Scale Direct
Monocular SLAM," European Conference on Computer Vision, 2014.

00:00:00.830
(2x speed)

LSD-SLAM builds a pose-graph of keyframes
and associated semi-dense depth maps.

» Sparse:

» C. Forster, M. Pizzoli and D. Scaramuzza, "SVO: Fast semi-direct monocular visuadl
odometry," IEEE International Conference on Robotics and Automation (ICRA), 2014.

§
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Direct Image Alignment

Extras:

Stereo (Semi)-Direct. J. Engel, J. StUckler and D. Cremers, "Large-scale direct
SLAM with stereo cameras,” IROS 2015.

00:00:01.266
(2x speed)

Single light

EuRoC T2_3 (VO Only)

Light Source Detection: T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B.
Glocker and A. J. Davison, “ElasticFusion: Dense SLAM Without A Pose Graph,”
RSS 2015.

f
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Visual-Inertial Fusion

= Monocular Vision (issues)

= Absolute pose is known up to a scale

= |nertial Measurement Unit (IMU) provides accelerations.

» Velocity, scale recoverable from 1 feature, 3 observations.

» Better-than constant velocity model in propagation.

"y Keyframes

e .

3D Landmark Structureless Projection Factor

4
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Visual-Inertial Fusion

= Visual-Inertial Odometry:

» Flter-based.

» A| Mourikis, SI Roumeliotis, “A multi-
state constraint Kalman filter for vision-
aided inerfial navigation,” ICRA, 2007.

= M. Bloesch, S. Omari, M. Hutter and R.
Siegwart, "Robust visual inertial

odometry using a direct EKF-based
approach,” IROS, 2015.

Fast Dataset

= Non-linear Optimization-based

» Stefan Leutenegger, Simon Lynen,
Michael Bosse, Roland Siegwart and
Paul Timothy Furgale, “Keyframe-
based visual-inertial odometry using
nonlinear optimization”, [JRR, 2015.

¥
. i
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Depth — Time-of-Flight

» Depth sensors — [CP: = KinectFusion

How much space fits info the volume?¢

= Depends on resolution:
2GB GPU: 512x512x512 voxels
sSmm/voxel: 2.5m side length

)
0
|
i
!I‘
N

q
=\

N
l‘: i
‘-NI-EIIFI-CI-CI-CI.CI-!

g N N N N N N

TSDF (volumetric model)

§
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Depth — Time-of-Flight

» Depth sensors — [CP:

= For arbitrarily large exploration

volumes, treat TSDF as circular
buffer.

= Kintinuous: Spatially
Extended KinectFusion

= Whelan, Thomas; Kaess, Michael; Fallon, [
Maurice; Johannsson, Hordur; Leonard, 4 newsurface
John; McDonald, John, CSAIL 2012.
: - = Mesh Triangulation: Pointcloud

“slices” of TSDF

1. Camera motion 2. Raycast 3. Extracted point cloud

Live TSDF 4~ AL

Camera Posex | | Wi

TSDF Cube

Dense triangular mesh

¥
\1(
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Depth — Time-of-Flight

» | [ght Detection And Ranging:

» Exfreme accuracy over long
distances.

= /hang, Ji, and Sanjiv Singh. "Low-drift
Mapping.” Autonomous Robots, 2016.

-Ind planes (pathes), edges,
track across LIDAR sweeps

3D lidar based on
Hokuyo scanner

= Optimization-based (Levenberg-
Marquadt)

= |[ntegration of pointclouds,
Transform estimation at different
rates.
1Hz Undistorted P,

~ P | 1Hz Map Output
— 7 [ 7 e
Lidar . >

Odometry y 1Hz Transform Update

ﬁ Transform Integration ——»
10Hz Transform Output

10Hz Transform
Update

f
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Thermal Cameras

= Monocular Vision (non-visible spectrum)

» Feature-based
= FAST, GFFT (Shi-Tomashi)

» S.Vidas and S. Sridharan, "Hand-held
monocular SLAM in thermal-infrared,”
ICARCYV, 2012.

» Benefits:

= Unigue Invariance |

§
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EXtras
» Semantic SLAM:

» Renato F. Salas-moreno , Richard A. Newcombe , Hauke Strasdat,
Paul H. J. Kelly , Andrew J. Davison, “SLAM++ : Simultaneous
_ocalisation and Mapping at the Level of Objects”, CVPR 2013

= Relies on Database of known objects.

p . » \ ) 2 /
& (N \ "5 /
i o = /

= Map is a pure graph .
of objects.

W

,.,‘) e 3
AT i Y
{a T 7417
A _ !
P o ¢
)
¥ ol
N\ (

» |CP between measurement
and Rendered World

14

¥
AUTONOMOUS
ROBOTS
LAB

Autonomous Robots Lab, University of Nevada, Reno ‘



Research & Development at ARL

Autonomous Multi-Modo

Localiza!

Fundamen:

lon and Mapping:

als and 1

ne State-of-the-Art



Multi-Modal Characterization of
DOE-EM Facllities

» Challenges:

=» Unknown Maps.

= Ambiguous / Degraded-structure subsets.

= Visually Degraded Environment.

= Tight clearances.

RadBots for multi-modal characterization of DOE-EM facilities

= :"u %, 3D Rad/Chem Mapping

Autonomous Robots Lab, University of Nevada, Reno ¢§§§8¥8M°”5 @




Multi-Modal Characterization of
DOE Nuclear Facllities

= Multi-Modal sensing.
= Visible light

. . ~ = NI Spectrum
» Visual-Inertial Fusion.

= Time-of-Flight. —

» Stereo Vision.

» Camsync

module

= LIDAR unif.
» Thermal cameras. = Active lllumination
= RADAR.

§
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Consistent Localization & Mapping

Uncertainty-aware Receding Horizon
Exploration and Mapping using Aerial Robots

Christos Papochristos, Shehryar Khattak, Kostas Alexis

o Initialization Exploration Step . Belief Uncertainty-aware Step
N (_»’3‘5;-‘,}.“‘_- v ; . -
e, p = :
’ .

e B
S e —~

; ' J = 'f.‘fo‘; 'I‘ — -—"\‘
G;‘ - __ o L N\
S  Octomap Probabiliies <@l Belief Propagation
» - e
. ""_.. . 4 |

}‘? “’ ray-casfing . \

-9 A
*w Landmark | curent pose i | =N

y AUTONOMOUS
§ ROBOTS
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Localization & Mapping In VDE

Exploration and Mapping in Visually-degraded Environments
Preliminary results

C. Papachiristos, S. Khattak, F. Mascarich, K. Alexis

-

LAB

This material is based upon work supported by the Department of Energy under Award Number [DE-EM0004478]

)Il
AUTONOMOUS M
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Multi-Modal Localization & Mapping

Fusion of Multiple
sensor Modalities.

Filter-based fusion. "Q'! i
Calibrated MM ' ”
sensors package.

Multi-modal SLAM
(Autonomous Robots Lab -UNR)

Tight-fusion research.

3D Features

I,

\14
Autonomous Robots Lab, University of Nevada, Reno .ﬁﬁ%ﬁ%‘s’m“s @
LAB




I fThan{u ),
("Student Projects Anngun‘qemen’r &

..._ e : :

- - " 1. ‘
X — | - .
= T\



Student Projects

= Project #1: Flying and Acting Together
= Perceive the world together.

= Distributed state estimation between
collaborative aerial roboftic systems.

= Collaborative navigation and mapping.

» Collaborative physical action for tasks
such as aerial fransportation.

= Constructive development and testing
using the facilities of the Autonomous
Robofts Arena.

= |ndicative example: Rapid beachhead
building in disaster areas.
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Student Projects

= Project #2: Adapting to the Environment

= |earn improved localization and planning
behaviors by evaluating different active
perception or multi-modal fusion strategies
In different environment subsets.

» |denfify the map between environment
types, optimize active perception and
multi-modal fusion strategies.

» Constructive development and festing RURICINTRS ClylolS
using the facilities of the Autonomous
Robots Arena.

= |ndicative example: Robot that operates in
partially well-lit & dark. Learn best behavior,
in first steps. Adapf automatically to
different cases.
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‘Rledse ask your question
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