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RRTs for holonomic robots

Ô So far we considered RRTsfor holonomic robots

Ô What about robots that are unable to follow holonomic trajectories



Holonomic vs Nonholonomic Constraints

Ô Holonomic constraints depend only on configuration

ÔὊήȟὸ π[even time -varying]

Ô Technically, these have to be bilateral constraints (no inequalities)

ÔTypically in robotics this is ignored and collision constraints are

accounted also for holonomic limitations .

Ô Nonholonomic constraints cannot be written in this form



Holonomic vs Nonholonomic Constraints

Ô Example : The kinematics of a unicycle

Ô Can move forward and black

Ô Can rotate about the wheel center

Ô Canõtmove sideways

Ô A unicycle can still reach any (x,y,ȇ)

configuration but may not be able to got to a

certain (x,y,ȇ)directly .



Holonomic vs Nonholonomic Constraints

Ô Nonholonomic constraints are non -integratable , i.e. cannot be rewritten as

holonomic constraints

Ô Nonholonomic constraints must contain derivatives of the robot

configuration

Ô They are also called non -integratable differential constraints

Ô Therefore, we need to consider how to move between configurations (or

robot states) when planning



Constraint Taxonomy

Class Constraint

Bilateral Two-sided constraint which can be expressed by equations of the 

form Ὂȣ π

Unilateral A one -sided constraint, requiring an inequality Ὂȣ π

Holonomic A constraint that can be expressed as an equation in just the 

configuration variables, and possibly time, but independent of the 

rate variables, Ὂήȟὸ π

Nonholonomic A constraint that cannot be expressed in the form Ὂήȟὸ π
requiring either inequalities or rate variables 

Scleronomic A stationary constraint, expressible independent of time Ὂήȟή π

Rheonomic A moving constraint, involving time Ὂήȟήȟὸ π



State Space vs Control Space

Ô State Space :

ὼȟώȟᾀȟȟ•ȟ—

ὼȟώȟᾀȟȟ•ȟ—

Ô Control Space :

Ô Speed or acceleration

Ô Steering angles



Example: simple car

Ô Nonholonomic constraint :

Ô Motion model

Ô where

Ô ό is the velocity

Ô ό is the steering angle



Moving between states (no obstacles)

Ô Two-point Boundary Value Problem (BVP): Find a control sequence to take

system from the current state ὼ to goal state ὼ while respecting the

applicable kinematic constraints .

Ô Many different methods exist:

Ô Steering functions (e .g . Dubins Car)

Ô Shooting methods : Pick initial guess, iteratively get closer to the goal

Ô For motion planning, we can only use this locally as it cannot account for

obstacles

ὼ

ὼ



Probabilistic RoadMap



Rapidly -exploring Random Trees (RRTs)



Sampling -based Planning for NH robots

Ô Sampling -based planning has been among the most successful methods to

deal with nonholonomic constraints in a computationally tractable and

extendable way .

Ô The main difference now is that we will be sampling on the whole state -

space of the robot (e .g . including its velocities) and not only on the

configuration space .

Ô Thismeans :

Ô Increased dimensionality

Ô The robot will have to account for its NH constraints and will not be able to follow

direct paths (in general)

Ô Distance metric is unclear . What about relying on time -of -arrival calculations?



PRM-style Nonholonomic Planning

Ô Sampling, graph -building, and query strategies are all the same as regular

PRM

Ô Problem : Local planner needs to reach an EXACT state (i.e. a given node)

while obeying nonholonomic constraints

Ô In general : BVP problem, uses a general solver (slow execution)

Ô In practice we use local planner that isspecialized to the system type

Ô Example : Dubins Car, Reeds-Shepp Car

ὼ

ὼ



RRT-style Nonholonomic Planning

Ô RRTwas originally proposed as a method for nonholonomic planning

Ô Sampling and tree building is the same as RRTfor holonomic vehicles

Ô Problem : Not all straight lines are valid and cannot extend towards the new

nodes

ÔWe use motion primitives to get as close as possible to the target node

Ô No major problem : we still explore new nodes



RRT for Nonholonomic Planning

Ô Apply motion primitives (i.e. simple actions) at ή

Ô Respect the motion model and identify the sequence of controls (or via a
BVSðthe sequence of states) for collision -free navigation .

Ô The system probably will not reach ή exactly but this is acceptable as it is
still exploring its state space

NonholonomicHolonomic



RRT-style Nonholonomic Planning

Ô The direct Euclidean distance is without certain

meaning regarding the actual travel cost .

Ô A meaningful approach for a simplified case :

Ô Employ Dubins Car model

Ô For every new vertex, simulate the relevant paths and

evaluate which one is shorter based on this motion

model

Ô Perform RRTconnections accordingly .



Rapidly -exploring Random Trees

Ô The RRTalgorithm isprobabilistically complete

Ô The probability of success goes to 1 exponentially fast, if the environment

satisfies certain ògoodvisibilityóconditions .

ὠᴺ ὼ ȠὉᴺπȠ
for i=1,é,N do :

ὼ ᴺὛὥάὴὰὩὊὶὩὩȠ
ὼ ᴺὔὩὥὶὩίὸὋ ὠȟὉȟὼ Ƞ
ὼ ᴺ╢◄▄▄►ὼ ȟὼ Ƞ
if ὕὦίὸὥὧὰὩὊὶὩὩὼ ȟὼ then :

ὠᴺὠ᷾ὼ ȠὉᴺὉ᷾ ὼ ȟὼ Ƞ
return Ὃ ὠȟὉȠ

RRT



Bi-Directional Nonholonomic RRT

Ô Grow the tree on both directions

Ô How do we bridge these two points?

Ô Based on a cost metric (e .g . distance) and as long as we retain a tree structure



Bi-Directional Nonholonomic RRT

Ô Grow the tree on both directions



Nonholonomic Smoothing

Ô Similar to holonomic case, paths produced can be highly suboptimal (almost -sure

suboptimality of the RRT)


