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World state (or system state)

O Belief state :

O Our belieflestimate of the world state

O World state:

O Real state of the robot in the real world

Parts of this talk are inspired fromthe edX | ect ure OAutonomous NRwob @tagad ofnrml
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State Estimation

O What parts of the world state are (most) relevant for a flying robot?
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State Estimation

~

O Cannot observe world state directly

O Need to estimate the world state
O But How?

O Infer world state from sensor data

O Infer world state from executed motions/actions




Sensor Model

O Robot perceives the environment through its sensors:
z = h(x)

O Where zisthe sensor reading , h isthe world state.

O Goal : Infer the state of the world from sensor readings .

x = h™'(z)




Motion Model

O Robot executes an action (or control) u

~

O e.g: move forward at 1m/s

O Update belief state according to the motion model :

x = g(x,u)

O Where x @sthe current state and x isthe previous state .




Probabilistic Robotics

O Sensor observations are noisy, partial, potentially missing.

O All models are partially wrong and incomplete .

O Usually we have prior knowledge .




Probabilistic Robotics

Probabilistic sensor models : p(Z‘X)

/
Probabilistic motion models : p(X ‘Xj U)

O Fuse data between multiple sensors (multi-modal) :

P(X|ZGgprs,ZBARO, ZIMU)

D Fusedata over time (filtering) :

P(X|21,Z2, ..., Z¢)
p(x|z1,uy, 2o, s, ..., %, Us)
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Probability theory

O Random experiment that can produce a number of outcomes, e.g. a rolling
dice .

O Sample space, e.g.: {1,2,3,4,5,6}
O Event A issubset of outcomes, e.g.{1,3,5}
robability P(A), e.g. P(A)=0.5




Axioms of Probability theory
c0< P(A) <1
o P(Q)=1, P()=0
o P(AUB)=P(A)+ P(B) — P(AN B)




Discrete Random Variables

O

X denotes a random variable

O

X can take on a countable number of values in {X,X,,& X.}

@)

P(X=x) isthe probability that the random variable X takes on value x

O

P() iscalled the probability mass function

Example : P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,
kitchen




Continuous Random Variables

O X takes on continuous values.
O P(X=x)or P(X) iscalled the probability density function (PDF).

Thrun, Burgard, Fox, 0 Pr obabi |
Ro b ot IMETPréss,2005

O Example :

p(x) ]




Proper Distributions Sum To One

O Discrete Case Z P(.CC) — ]_
X

O, Continuous Case /p(l')dl' =1




Joint and Conditional Probabillities
> p(X =z, and Y =y) = P(z,y)
D If Xand Y are independent then :

P(z,y) = P(x)P(y)

D Isthe probability of x given y

P(z|ly)P(y) = P(z,y)

D If Xand Y are independent then:

P(zly) = P(x)




Conditional Independence

O Definition of conditional independence :
P(z,ylz) = P(xz|z)P(y|2)

O Equivalent to:

P(z|z) = P(z|y, 2)
P(y|z) = P(y|z, 2)

O Note : this does not necessarily mean that :

P(z,y) = P(z)P(y)




Marginalization

O Discrete case : P(,CC) — Z P(IL‘; y)
Yy

O, Continuous case : p(ﬂf) — /p(aj? y)dy




Marginalization example
PX,Y) | xi X1 X1 X1 P(Y) |

P(X) 1/2 1/4 1/8 1/8 1
—p




Expected value of a Random Variable
O Discrete case : E[X] — Z x%P(xg)

O /Continuous Case:E[X] — /QCP(X — ,’L’)d.’L’

O The expected value isthe weighted average of all values a random variable
can take on.

O Expectation isa linear operator :

FElaX +b] =aFE[X]|+b



Covariance of a Random Variable

O Measures the square expected deviation from the mean :

Cov[X]| = E[X — E[X]]* = E[X?] — E[X]?




Estimation from Data

O Observations : X1, X9, ..., Xp, - Rd

1
O Sample Mean: MU = — E X;
n =
1

O Sample Covariance :

=S — ) (% — 1)

n—1

()
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