The Aerial Robot Loop

How to design the flight control of an aerial robot and program its autopilot.

Section 3 of our course
MAV Dynamics

To append the forces and moments we need to combine their formulation with

\[
\begin{bmatrix}
\dot{p}_n \\
\dot{p}_e \\
\dot{p}_d \\
\dot{u} \\
\dot{v} \\
\dot{w} \\
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{bmatrix}
= \mathcal{R}_b^v \begin{bmatrix}
u \\
v \\
w \\
f_x \\
f_y \\
f_z \\
p \\
q \\
r
\end{bmatrix}, \quad \mathcal{R}_b^v = \begin{bmatrix}
c_\phi c_\psi & s_\phi s_\theta c_\psi - c_\phi s_\psi & c_\phi s_\theta c_\psi + s_\phi s_\psi \\
c_\phi s_\psi & s_\phi s_\theta s_\psi + c_\phi c_\psi & c_\phi s_\theta s_\psi - s_\phi c_\psi \\
-s_\theta & s_\phi c_\theta & c_\phi c_\theta
\end{bmatrix}
\]

Next step: append the MAV forces and moments
MAV Dynamics

- MAV forces in the body frame:

\[
f_b = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sum_{i=1}^{6} T_i \end{bmatrix} - \mathcal{R}_v^b \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}
\]

- Moments in the body frame:

\[
m_b = \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix} = \begin{bmatrix} ls_{30} & l & ls_{30} & -ls_{30} & -l & ls_{30} \\ -lc_{60} & 0 & lc_{60} & lc_{60} & 0 & -lc_{60} \\ -k_m & k_m & -k_m & k_m & -k_m & k_m \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix}
\]
MAV Dynamics

- MAV forces in the body frame:

\[
\mathbf{f}_b = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sum_{i=1}^{6} T_i \end{bmatrix} - \mathcal{R}_v^b \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}
\]

- Moments in the body frame:

\[
\mathbf{m}_b = \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix} = \begin{bmatrix} l s_{30} & l & l s_{30} & -l s_{30} & -l & l s_{30} \\ -l c_{60} & 0 & l c_{60} & l c_{60} & 0 & -l c_{60} \\ -k_m & k_m & -k_m & k_m & -k_m & k_m \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix}
\]
Control System Block Diagram

- There are simpler
Control System Block Diagram

- Simplified loop
Controlling a Multirotor along the x-axis

- Assume a single-axis multirotor.
- The system has to coordinate its pitching motion and thrust to move to the desired point ahead of its axis.
- Roll is considered to be zero, yaw is considered to be constant. No initial velocity. No motion is expressed in any other axis.
- A system of only two degrees of freedom.
Controlling a Multirotor along the x-axis

- Simplified linear dynamics

\[
\begin{bmatrix}
\dot{\theta} \\
\ddot{\theta}
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
\theta \\
\dot{\theta}
\end{bmatrix} + \begin{bmatrix}
0 \\
1/J_y
\end{bmatrix} M_y
\]

\[
\begin{bmatrix}
\dot{x} \\
\ddot{x}
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
x \\
\dot{x}
\end{bmatrix} + \begin{bmatrix}
0 \\
-g
\end{bmatrix} \theta
\]

How does this system behave?
Optimal Model-Based Control

- Use model knowledge to design optimal control behaviors.
- The employed model must be simultaneously sufficiently accurate but also simple enough to enable efficient control computation.
- Optimal control can support linear and nonlinear systems as well as systems subject to state, output and input constraints. Further extensions (e.g. for hybrid systems) also exist.
- Established method for unconstrained linear systems regulation:
 - Linear Quadratic Regulator (LQR)
 - Generalization: Linear Quadratic Gaussian (LQG) control
Consider the system

\[\dot{x} = Ax + Bu \]

and suppose we want to design state feedback control \(u = Fx \) to stabilize the system. The design of \(F \) is a trade-off between the transit response and the control effort. The optimal control approach to this design trade-off is to define the performance index (cost functional):

\[J = \int_0^\infty \left[x^T(t)Qx(t) + u^T(t)Ru(t) \right] dt \]

and search for the control \(u = Fx \) that minimizes this index. \(Q \) is an \(nxm \) symmetric positive semidefinite matrix and \(R \) is an \(m \times m \) symmetric positive definite matrix.
Linear Quadratic Regulator

- The matrix Q can be written as $Q = M^T M$, where M is a $p \times n$ matrix, with $p \leq n$. With this representation:
 \[x^T Q x = x^T M^T M x = z^T z \]

- Where $z = Mx$ can be viewed as a controlled input.

- Optimal Control Problem: Find $u(t) = F x(t)$ to maximize J subject to the model:
 \[\dot{x} = A x + B u \]

- Since J is defined by an integral over $[0, \infty)$, the first question we need to address is: Under what conditions will J exist and be finite?
Linear Quadratic Regulator

Write J as:

$$J = \lim_{t_f \to \infty} \tilde{J}(t_f)$$

$$\tilde{J}(t_f) = \int_0^{t_f} [x^T(t)Qx(t) + u^T(t)Ru(t)] \, dt$$

$\tilde{J}(t_f)$ is a monotonically increasing function of t_f. Hence, as $t_f \to \infty$, $\tilde{J}(t_f)$ either converges to a finite limit or diverges to infinity.

Under what conditions will $J = \lim_{t_f \to \infty} \tilde{J}(t_f)$ be finite?
Linear Quadratic Regulator

- Recall that (A, B) is stabilizable if the uncontrollable eigenvalues of A, if any, have negative real parts.
- Notice that (A, B) is stabilizable if (A, B) is controllable or $Re[\lambda(A)] < 0$
- Definition: (A, C) is detectable if the observable eigenvalues of A, if any, have negative real parts.
- Lemma 1: Suppose (A, B) is stabilizable, (A, M) is detectable, where $Q=M^TM$, and $u(t)=Fx(t)$. Then, J is finite for every $x(0) \in \mathbb{R}^n$ if and only if:

$$Re[\lambda(A + BF)] < 0$$
Linear Quadratic Regulator

Remarks:
- The need for \((A,B)\) to be stabilizable is clear, for otherwise there would be no \(F\) such that:

- To see why detectability of \((A,M)\) is needed, consider:

\[
\dot{x} = x + u, \quad J = \int_{0}^{\infty} u^2(t) \, dt
\]

\[
A = 1, \quad B = 1, \quad M = 0, \quad R = 1
\]

- \((A,B)\) is controllable, but \((A,M)\) is not detectable

\[
F = 0 \implies u(t) = 0 \implies J = 0
\]

- The control is clearly optimal and results in a finite \(J\) but it does not stabilize the system because \(A + BF = A = 1\)
Linear Quadratic Regulator

- **Lemma 2**: For any stabilizing control $u(t) = Fx(t)$, the cost given by:

$$J = x(0)^T W x(0)$$

- where W is a symmetric positive semidefinite matrix that satisfies the Lyapunov equation:

$$W(A + BF) + (A + BF)^T W + Q + F^T RF = 0$$

- Remark: The control $u(t) = Fx(t)$ is stabilizing if:

$$Re[\lambda(A + BF)] < 0$$
Theorem: Consider the system: \(\dot{x} = Ax + Bu \) and the performance index:

\[
J = \int_{0}^{\infty} [x^T(t)Qx(t) + u^T(t)Ru(t)] \, dt
\]

where \(Q = M^T M \), \(R \) is symmetric and positive definite, \((A,B)\) is stabilizable, and \((A,M)\) is detectable. The optimal control is:

\[
u(t) = -R^{-1}B^TPx
\]

where \(P \) is the symmetric positive semidefinite solution of the Algebraic Riccati Equation (ARE):

\[
0 = PA + A^TP + Q - PBR^{-1}B^TP
\]
Linear Quadratic Regulator

Remarks:
- Since the control is stabilizing:
 \[R_e[\lambda(A - BR^{-1}B^T P)] < 0 \]
- The control is optimal among all square integratable signals \(u(t) \), not just among \(u(t) = Fx(t) \)
- The Ricatti equation can have multiple solutions, but only one of them is positive semidefinite.
Linear Quadratic Regulator

- Typical penalty matrices selection:

\[
Q = \begin{bmatrix}
q_1 & & \\
& q_2 & \\
& & \ddots \\
& & & q_n
\end{bmatrix}, \quad R = \rho \begin{bmatrix}
r_1 & & \\
& r_2 & \\
& & \ddots \\
& & & r_m
\end{bmatrix}
\]

\[
q_i = \frac{1}{t_{si}(x_{imax})^2}, \quad r_i = \frac{1}{(u_{imax})^2}, \quad \rho > 0
\]

- \(t_{si}\) is the desired settling time of \(x_i\)
- \(x_{imax}\) is a constraint on \(|x_i|\)
- \(u_{imax}\) is a constraint on \(|u_i|\)
- \(\rho\) is chosen to tradeoff regulation versus control effort
Linear Quadratic Regulator

LQR Loop (F=K)

\[Kx \]

System Dynamics
MATLAB Design Example

Recall:

\[
\begin{bmatrix}
\dot{\theta} \\
\ddot{\theta}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\theta \\
\dot{\theta}
\end{bmatrix} +
\begin{bmatrix}
0 \\
1/J_y
\end{bmatrix} M_y
\]

\[
\begin{bmatrix}
\dot{x} \\
\ddot{x}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\dot{x}
\end{bmatrix} +
\begin{bmatrix}
0 \\
-g
\end{bmatrix} \theta
\]
MATLAB Design Example

%% Simple Modeling and Control study
clear;
J_y = 1.2e-5;
g = 9.806; mass = 1.2;

%% Pitch Linear Model
A_p = [0 1; 0 0]; B_p = [0; 1/J_y];
C_p = eye(2); D_p = zeros(2,1);
ss_pitch = ss(A_p,B_p,C_p,D_p);

%% x Linear Model
A_x = [0 1; 0 0]; B_x = [0; -g];
C_x = eye(2); D_x = zeros(2,1);
ss_x = ss(A_x,B_x,C_x,D_x);

%% Observe the Step responses of the system
subplot(1,2,1); step(ss_pitch);
subplot(1,2,2); step(ss_x);
MATLAB Design Example

%% System discretization
Ts_pitch = 0.005;
Ts_trans = 0.01;
ss_pitch_d = c2d(ss_pitch,Ts_pitch,'zoh');
ss_x_d = c2d(ss_x,Ts_trans,'zoh');
MATLAB Design Example

```matlab
%% Design the LQR Controller for Pitch

Q_pitch = diag([1000, 10]);
R_pitch = 1;
[K_pitch, S_pitch, e_pitch] = dlqr(ss_pitch_d.A, ss_pitch_d.B, Q_pitch, R_pitch);

```
%% Design the LQR Controller for Pitch

Q_pitch = diag([1000, 10]);
R_pitch = 1;
[K_pitch, S_pitch, e_pitch] = dlqr(ss_pitch_d.A, ss_pitch_d.B, Q_pitch, R_pitch);

%% Design the LQR Controller for the translational X-Dynamics

Q_x = diag([100, 1]);
R_x = 1;
[K_x, S_x, e_x] = dlqr(ss_x_d.A, ss_x_d.B, Q_x, R_x)
%% Simulate the closed-loop response for pitch

ss_pitch_cl_d = feedback(ss_pitch_d,-K_pitch,1);
t_pitch = 0:0.005:2;
u_pitch = zeros(1,length(t_pitch));
x_pitch_0 = [pi/4,0];
x_pitch = lsim(ss_pitch_cl_d,u_pitch,t_pitch,x_pitch_0);

subplot(1,2,1); plot(t_pitch,x_pitch(1,:),b,'LineWidth',2);
xlabel('Time (s)',Interpreter,'LaTex','FontSize',22); ylabel('θ (rad)',Interpreter,'LaTex','FontSize',22); grid on;
subplot(1,2,2); plot(t_pitch,x_pitch(:,2),r,'LineWidth',2);
xlabel('Time (s)',Interpreter,'LaTex','FontSize',22); ylabel('$\dot{\theta}$ (rad/s)',Interpreter,'LaTex','FontSize',22); grid on;
axis tight;
MATLAB Design Example
MATLAB Design Example

%% Simulate the closed-loop response for pitch

```matlab
ss_x_cl_d = feedback(ss_x_d,-K_x,1);
t_x = 0:0.01:5;
u_x = zeros(1,length(t_x));
x_x_0 = [10,0];
x_x = lsim(ss_x_cl_d,u_x,t_x,x_x_0);

subplot(1,2,1); plot(t_x,x_x(:,1),'b','LineWidth',2);
xlabel('Time (s)','Interpreter','LaTex','FontSize',22); ylabel('$\text{\$x-(m)$}','Interpreter','LaTex','FontSize',22); grid on;
axis tight
subplot(1,2,2); plot(t_x,x_x(:,2),'r','LineWidth',2);
xlabel('Time (s)','Interpreter','LaTex','FontSize',22); ylabel('${\text{\$dot x-(m/s)$}}\text{','Interpreter','LaTex','FontSize',22}); grid on;
axis tight
```
MATLAB Design Example
MATLAB Aircraft Pitch Example

\[
\begin{bmatrix}
 \dot{\alpha} \\
 \dot{q} \\
 \dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
 -0.313 & 56.7 & 0 \\
 -0.0139 & -0.426 & 0 \\
 0 & 56.7 & 0
\end{bmatrix}
\begin{bmatrix}
 \alpha \\
 q \\
 \theta
\end{bmatrix} +
\begin{bmatrix}
 0.232 \\
 0.0203 \\
 0
\end{bmatrix} u_{elev}
\]

\[
y = \begin{bmatrix}
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 \alpha \\
 q \\
 \theta
\end{bmatrix}
\]

For a step reference of 0.2 radians, the design criteria are the following.

1. Overshoot less than 10%
2. Rise time less than 2 seconds
3. Settling time less than 10 seconds
4. Steady-state error less than 2%
MATLAB Aircraft Pitch Example

\[
\begin{bmatrix}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{bmatrix}
\begin{bmatrix}
\alpha \\
q \\
\theta
\end{bmatrix} +
\begin{bmatrix}
0.232 \\
0.0203 \\
0
\end{bmatrix} u_{elev}
\]

\[
y = \begin{bmatrix}
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\alpha \\
q \\
\theta
\end{bmatrix}
\]

For a step reference of 0.2 radians, the design criteria are the following.

1. Overshoot less than 10%
2. Rise time less than 2 seconds
3. Settling time less than 10 seconds
4. Steady-state error less than 2%
MATLAB Aircraft Pitch Example

%% LQR Design

\begin{verbatim}
p = 2;
Q = p*C'*C;
R = 1;
[K] = lqr(A,B,Q,R);

sys_cl = ss(A-B*K, B, C, D);
step(0.2*sys_cl)
ylabel('pitch angle (rad)');
title('Closed-Loop Step Response: LQR');
\end{verbatim}
MATLAB Aircraft Pitch Example
MATLAB Aircraft Pitch Example

```matlab
%% Closed-loop Simulation

p = 50;
Q = p*C'*C;
R = 1;
[K] = lqr(A,B,Q,R);
sys_cl = ss(A-B*K, B, C, D);
step(0.2*sys_cl)
ylabel('pitch angle (rad)');
title('Closed-Loop Step Response: LQR');
```
MATLAB Aircraft Pitch Example

[Graph showing a closed-loop step response for an LQR system]
MATLAB Aircraft Pitch Example

%% Adding Precompensation

```matlab
p = 50;
Q = p*C'*C;
R = 1;
[K] = lqr(A,B,Q,R);
Nbar = rscale(A,B,C,D,K);
```
MATLAB Aircraft Pitch Example

%% Closed-loop Simulation with Precompensation
sys_cl = ss(A-B*K,B*Nbar,C,D);
step(0.2*sys_cl)
ylabel('pitch angle (rad)');
title('Closed-Loop Step Response: LQR with Precompensation');
MATLAB Aircraft Pitch Example

Closed-Loop Step Response: LQR with Precompensation

Time (seconds)

Pitch angle (rad)
Find out more

- http://www.kostasalexis.com/pid-control.html
- http://www.kostasalexis.com/lqr-control.html
- http://www.kostasalexis.com/linear-model-predictive-control.html
Thank you!

Please ask your question!